trapezium
简明释义
n. (英)[数]梯形(等于 trapezoid);(美)[数]不规则四边形;大多角骨
复 数 t r a p e z i u m s 或 t r a p e z i a
英英释义
单词用法
等腰梯形 | |
梯形面积 | |
计算梯形的面积 | |
梯形的性质 |
同义词
梯形 | 一个梯形至少有一对平行边。 | ||
四边形 | 在几何学中,梯形常用于计算面积。 |
反义词
矩形 | 矩形有四个直角。 | ||
正方形 | 正方形是一种特殊的矩形。 |
例句
1.This paper has proposed an explanation for why the Trapezium is an unstable system, on basis of the model suggested by -the authors before.
本文根据我们以前提出的四边形聚星起源的模型解释了为什么四边形聚星是不稳定系统。
2.The region's hottest stars are found in the Trapezium cluster, the brightest cluster near picture center.
这个区域最热的恒星在猎户四边形星团中,即画面中心附近的最明亮的那个星团。
3.Objective To develop a new type fusion apparatus for scaphoid-trapezium-trapezoid (STT) arthrodesis.
目的研发新型腕舟骨、大、小多角骨(STT)融合器。
4.Based on the present literatures, this article has carried on the discussion to the vehicles steering trapezium optimization design model solution method.
在现有文献研究的基础上,对车辆转向梯形优化设计模型的求解方法进行了探讨。
5.These trajectories are interpolated twice. The first interpolation mainly assures the accuracy of trajectory. Its velocity is trapezium, which only fits the deceleration motion.
本言对所研究的轨迹规划采用两次插补,第一次插补主要是保证轨迹的准确性,其运动速度曲线为梯形曲线,只适合机器人低速运动的情况。
6.The line interpolation adopts trapezium mode, and the arc interpolation adopts the principle of Lissajous Pattern.
直线插补采用梯形曲线模式,圆弧插补采用李沙育图形原理。
7.During the math competition, one of the problems involved calculating the area of a trapezium.
在数学竞赛中,其中一个问题涉及计算一个梯形的面积。
8.The architect designed the roof in the shape of a trapezium to allow for better drainage.
建筑师将屋顶设计成梯形的形状,以便更好地排水。
9.The carpenter used a trapezium shape for the table legs to add a unique design element.
木匠使用梯形形状作为桌腿,以增加独特的设计元素。
10.In geometry class, we learned that a trapezium is a four-sided figure with at least one pair of parallel sides.
在几何课上,我们了解到,梯形是一个四边形,至少有一对平行边。
11.In art class, we were asked to create a painting that featured a trapezium as the main shape.
在艺术课上,我们被要求创作一幅以梯形为主要形状的画作。
作文
In the realm of geometry, shapes play a crucial role in understanding the world around us. One such shape that often comes into discussion is the trapezium, which in Chinese translates to 梯形. A trapezium is defined as a four-sided figure, or quadrilateral, that has at least one pair of parallel sides. This unique characteristic sets it apart from other quadrilaterals, such as rectangles and squares, which have two pairs of parallel sides. Understanding the properties of a trapezium can enhance our comprehension of more complex geometric concepts.The most common type of trapezium is the isosceles trapezium, where the non-parallel sides are of equal length. This symmetry gives the isosceles trapezium a distinct aesthetic appeal and makes it a popular choice in architectural designs. For instance, many bridges and buildings incorporate trapezium-shaped elements to create visually striking structures while also maintaining structural integrity. The angles in an isosceles trapezium are also noteworthy; the base angles are equal, which adds to its symmetry.Another important aspect of the trapezium is its area calculation. The area of a trapezium can be found using the formula: Area = (1/2) × (a + b) × h, where 'a' and 'b' represent the lengths of the two parallel sides, and 'h' is the height between them. This formula is not only useful in mathematics but also has real-world applications. For example, when designing a garden or park, landscape architects often use trapezium shapes to maximize space and create pathways that flow naturally within the environment.In addition to its mathematical properties, the trapezium also appears in various fields such as art and design. Artists frequently utilize geometric shapes to create balance and harmony in their works. The trapezium, with its unique angles and lines, can add depth and perspective to a painting or sculpture. Furthermore, in graphic design, trapezium-shaped elements can be used to draw attention and guide the viewer's eye through a layout.Understanding the trapezium extends beyond mere definitions and formulas; it encourages critical thinking and problem-solving skills. When students learn about trapeziums, they engage in activities that require them to analyze and manipulate shapes, fostering a deeper appreciation for geometry. Additionally, recognizing how trapeziums relate to other geometric figures helps students build a solid foundation for more advanced topics in mathematics.In conclusion, the trapezium is a fascinating geometric shape that offers numerous opportunities for exploration and application. Its unique properties make it a vital component of geometry, architecture, art, and design. By delving into the characteristics and uses of the trapezium, we not only enhance our mathematical skills but also enrich our understanding of the world around us. Whether through calculations, artistic endeavors, or structural designs, the trapezium continues to inspire creativity and innovation across various disciplines.
在几何学的领域中,形状在理解我们周围的世界中起着至关重要的作用。其中一个常常被讨论的形状是trapezium,在中文中翻译为梯形。trapezium被定义为一种四边形,或称四边形,至少有一对平行边。这一独特的特性使其与其他四边形区分开来,例如矩形和正方形,它们都有两对平行边。理解trapezium的属性可以增强我们对更复杂几何概念的理解。最常见的trapezium类型是等腰trapezium,其中非平行边的长度相等。这种对称性赋予了等腰trapezium独特的美学吸引力,使其成为建筑设计中的热门选择。例如,许多桥梁和建筑都采用trapezium形状的元素,以创造视觉上引人注目的结构,同时保持结构的完整性。等腰trapezium中的角度也值得注意;底角相等,这增加了它的对称性。trapezium的另一个重要方面是其面积计算。trapezium的面积可以使用公式:面积 = (1/2) × (a + b) × h,其中'a'和'b'表示两条平行边的长度,'h'是它们之间的高度。这个公式不仅在数学中有用,而且在实际应用中也有很多用途。例如,在设计花园或公园时,景观建筑师常常使用trapezium形状来最大化空间并创建自然流畅的路径。除了其数学属性外,trapezium还出现在艺术和设计等多个领域。艺术家经常利用几何形状来创造作品中的平衡与和谐。trapezium,凭借其独特的角度和线条,可以为绘画或雕塑增添深度和透视。此外,在平面设计中,trapezium形状的元素可以用来吸引注意力,引导观众的目光穿过布局。理解trapezium不仅仅是定义和公式;它鼓励批判性思维和解决问题的能力。当学生学习trapezium时,他们参与需要分析和操纵形状的活动,从而培养对几何学的更深刻欣赏。此外,认识到trapezium与其他几何图形的关系,有助于学生为更高级的数学主题打下坚实的基础。总之,trapezium是一种迷人的几何形状,提供了众多探索和应用的机会。其独特的属性使其成为几何学、建筑、艺术和设计的重要组成部分。通过深入研究trapezium的特征和用途,我们不仅提高了数学技能,还丰富了对周围世界的理解。无论是通过计算、艺术创作还是结构设计,trapezium继续在各个学科中激发创造力和创新。