impeller thrust-total thrust ratio

简明释义

叶轮推力与总推力比

英英释义

The impeller thrust-total thrust ratio refers to the proportion of the thrust generated by the impeller of a pump or turbine compared to the total thrust produced by the entire system.

叶轮推力与总推力比率是指泵或涡轮的叶轮产生的推力与整个系统产生的总推力之间的比例。

例句

1.In our latest study, we found that the impeller thrust-total thrust ratio (叶轮推力-总推力比) significantly affects the overall system efficiency.

在我们最新的研究中,我们发现叶轮推力-总推力比叶轮推力-总推力比)显著影响整体系统效率。

2.Engineers often analyze the impeller thrust-total thrust ratio (叶轮推力-总推力比) to ensure optimal performance of the turbine.

工程师们通常分析叶轮推力-总推力比叶轮推力-总推力比),以确保涡轮的最佳性能。

3.The design of the pump was optimized to improve the impeller thrust-total thrust ratio (叶轮推力-总推力比), resulting in better efficiency.

泵的设计经过优化,以改善叶轮推力-总推力比叶轮推力-总推力比),从而提高了效率。

4.The impeller thrust-total thrust ratio (叶轮推力-总推力比) is a critical factor in the design of high-performance jet engines.

在高性能喷气发动机的设计中,叶轮推力-总推力比叶轮推力-总推力比)是一个关键因素。

5.A higher impeller thrust-total thrust ratio (叶轮推力-总推力比) indicates a more effective impeller design in fluid dynamics.

更高的叶轮推力-总推力比叶轮推力-总推力比)表明流体动力学中更有效的叶轮设计。

作文

The study of fluid dynamics is crucial in understanding how various components work together to create efficient systems. One important aspect of this field is the analysis of thrust generated by different mechanical parts, particularly in propulsion systems. Among these components, the impeller plays a vital role. An impeller is a rotating component of a centrifugal pump or a compressor that transfers energy from the motor to the fluid, increasing its velocity and pressure. To evaluate the efficiency of an impeller, engineers often consider the impeller thrust-total thrust ratio, which is a key performance indicator. This ratio helps to determine how effectively the impeller converts rotational energy into thrust compared to the total thrust produced by the entire system.Understanding the impeller thrust-total thrust ratio is essential for optimizing design and operational parameters in various applications, such as jet engines, marine propulsion systems, and hydraulic pumps. A high impeller thrust-total thrust ratio indicates that the impeller is effectively contributing to the overall thrust, which can lead to improved fuel efficiency and performance. Conversely, a low ratio may suggest that the impeller is not functioning optimally, potentially leading to wasted energy and reduced effectiveness.When designing an impeller, engineers must take into account several factors that influence the impeller thrust-total thrust ratio. These include the geometry of the impeller blades, the speed of rotation, and the properties of the fluid being moved. For instance, a well-designed blade shape can enhance the flow characteristics and increase the thrust generated by the impeller. Additionally, operating at the correct rotational speed is crucial; too slow can result in insufficient thrust, while too fast might cause cavitation, damaging the impeller and reducing efficiency.Moreover, the impeller thrust-total thrust ratio can vary significantly based on the application. In marine propulsion, for example, the ratio must be optimized for varying load conditions, such as changes in water density or vessel speed. Similarly, in aviation, the performance of an aircraft engine is heavily influenced by this ratio, as it directly impacts the thrust-to-weight ratio, which is critical for takeoff and maneuverability.In conclusion, the impeller thrust-total thrust ratio is a fundamental concept in the study of propulsion systems. It not only helps engineers assess the performance of impellers but also guides the design and optimization of various mechanical systems. By understanding and applying this ratio, engineers can create more efficient and effective systems that meet the demands of modern technology. Continuous research and development in this area will undoubtedly lead to advancements in efficiency and performance across multiple industries, highlighting the importance of the impeller thrust-total thrust ratio in engineering practices today.

流体动力学研究对于理解各种组件如何协同工作以创建高效系统至关重要。该领域的一个重要方面是分析不同机械部件产生的推力,特别是在推进系统中。在这些组件中,叶轮起着至关重要的作用。叶轮是离心泵或压缩机的旋转组件,它将电机的能量转移到流体中,从而增加其速度和压力。为了评估叶轮的效率,工程师通常考虑叶轮推力-总推力比,这是一个关键的性能指标。这个比率有助于确定叶轮将旋转能量有效转化为推力的程度,与整个系统产生的总推力相比。理解叶轮推力-总推力比对于优化各种应用的设计和操作参数至关重要,例如喷气发动机、海洋推进系统和液压泵。高叶轮推力-总推力比表明叶轮有效地贡献了整体推力,这可以提高燃油效率和性能。相反,低比率可能表明叶轮未能最佳运行,可能导致能源浪费和效率降低。在设计叶轮时,工程师必须考虑几个影响叶轮推力-总推力比的因素。这些因素包括叶轮叶片的几何形状、旋转速度和被移动流体的性质。例如,良好设计的叶片形状可以增强流动特性并增加叶轮产生的推力。此外,在正确的旋转速度下操作至关重要;过慢可能会导致推力不足,而过快则可能导致气蚀,损坏叶轮并降低效率。此外,叶轮推力-总推力比在不同应用中可能有显著差异。例如,在海洋推进中,必须针对不同的负载条件(如水密度或船速变化)优化该比率。类似地,在航空领域,飞机发动机的性能受到这一比率的严重影响,因为它直接影响推重比,而推重比对起飞和机动性至关重要。总之,叶轮推力-总推力比是推进系统研究中的一个基本概念。它不仅帮助工程师评估叶轮的性能,还指导各种机械系统的设计和优化。通过理解和应用这一比率,工程师可以创造出更高效、更有效的系统,以满足现代技术的需求。在这一领域的持续研究和开发无疑将推动多个行业的效率和性能进步,突显了叶轮推力-总推力比在当今工程实践中的重要性。

相关单词

ratio

ratio详解:怎么读、什么意思、用法