aleph

简明释义

[ˈɑːlɪf][əˈlɪf]

n. 希伯来语的第一个字母

英英释义

The first letter of the Hebrew alphabet, often used in mathematics and set theory to denote the cardinality of infinite sets.

希伯来字母表的第一个字母,常用于数学和集合论中表示无限集的基数。

单词用法

aleph-null

阿列夫零(表示可数无穷大)

aleph-one

阿列夫一(表示第一个不可数无穷大)

the first aleph

第一个阿列夫

aleph numbers

阿列夫数

同义词

alpha

阿尔法

The alpha of the series indicates the starting point.

系列的阿尔法表示起始点。

beginning

开始

In mathematics, 'alpha' often represents the first element.

在数学中,'阿尔法'通常代表第一个元素。

first

第一

The beginning of the project was marked by an aleph.

项目的开始以一个aleph标志。

反义词

beth

贝斯

Beth is the second letter of the Hebrew alphabet.

贝斯是希伯来字母表的第二个字母。

zero

Zero represents the absence of quantity.

零表示数量的缺失。

例句

1.In this paper, through the application and analysis of ALEPH 500 acquisition module, its advantageous function and characteristics are generalized and described in great detail.

通过对ALEPH 500系统采访模块的应用和分析,对采访模块强大的功能和特点进行了概括和描述,同时分析和论述了采访模块存在的问题和解决方法。

2.Aleph, alpha: nought, nought, one.

阿列夫,阿尔法,零,零,一。

3.Japan ALEPH ( AI Lee Fu ), such as shooting probe burglar alarm equipment. Shenzhen Haitai Electronics Co.

日本ALEPH ( 艾利富) 对射探头等防盗报警器材。

4.Isaac! Have you remembered to meditate on Mt. Aleph daily?

丽沙克!你是否每天都记着回忆艾利夫山的事情?

5.In Phoenician as in Hebrew, "aleph" means ox, and "bet" means house; the Greek "alpha" and "beta" are meaningless.

和希伯来语一样,在腓尼基语中,“aleph”意指牛,“bet”意指房子,而希腊语中的“alpha”和“beat”则没有意义。

6.The first known PUBLIC description of buffer-overflows (" Smashing the stack for fun and profit ", by Aleph One) appeared here.

第一次缓冲区溢出知名上市的说明(“精彩有趣的堆栈和利润”,由麻原彰晃一)出现在这里。

7.ALEPH. Blessed [are] the undefiled in the way, who walk in the law of the LORD.

行为完全,遵行耶和华律法的,这人便为有福。

8.Aleph said in a statement that it was disappointed Endo had not spoken during his trial to give the victims' families a chance to understand what had happened.

阿莱夫教表示他们对远藤诚一感到失望,因为在庭审过程中他始终没有开口向受害人家属解释到底发生了什么。

9.The features and advantages of catalogue module are summarized and the problems of its application are also discussed based on the use of ALEPH 500 integrated system in cataloging.

在实际操作AL EPH 5 0 0系统编目模块的基础上,对其功能强大,易用性好的优点与特色进行了概括,同时分析了该编目模块在编目与检索中存在的各种缺陷。

10.The features and advantages of catalogue module are summarized and the problems of its application are also discussed based on the use of ALEPH 500 integrated system in cataloging.

在实际操作AL EPH 5 0 0系统编目模块的基础上,对其功能强大,易用性好的优点与特色进行了概括,同时分析了该编目模块在编目与检索中存在的各种缺陷。

11.In set theory, aleph 阿列夫 one is the cardinality of the set of all countable ordinal numbers.

在集合论中,aleph 阿列夫 一是所有可数序数的集合的基数。

12.The first aleph 阿列夫, known as aleph-null, represents the cardinality of the set of natural numbers.

第一个 aleph 阿列夫,称为阿列夫零,表示自然数集合的基数。

13.In the mathematical realm, the concept of aleph 阿列夫 numbers helps us understand different sizes of infinity.

在数学领域,aleph 阿列夫 数字的概念帮助我们理解不同大小的无穷大。

14.The discovery of aleph 阿列夫 two has profound implications for understanding higher infinities.

发现 aleph 阿列夫 二对理解更高的无穷大有深远的影响。

15.Georg Cantor introduced the aleph 阿列夫 notation to describe different levels of infinity.

乔治·康托尔引入了 aleph 阿列夫 符号来描述不同层次的无穷大。

作文

In the realm of literature and mathematics, the term aleph holds a significant place. The concept of aleph originates from set theory, introduced by the mathematician Georg Cantor in the late 19th century. It represents the cardinality of infinite sets. For instance, the smallest infinite set is represented by aleph-null, which corresponds to the set of natural numbers. This idea revolutionized our understanding of infinity and has profound implications in various fields such as philosophy, computer science, and even theology.Cantor's work on aleph not only provided a mathematical framework for discussing different sizes of infinity but also sparked debates about the nature of infinity itself. The distinction between different types of infinities, such as countable and uncountable infinities, is crucial in understanding the structure of the mathematical universe. aleph-one, for example, is the cardinality of the set of all countable ordinals, while aleph-two represents a larger type of infinity.Beyond mathematics, aleph has found its way into literature, most notably in the works of Jorge Luis Borges. In his story "The Aleph," Borges describes a point in space that contains all other points, allowing one to see everything in the universe simultaneously. This literary interpretation of aleph transcends its mathematical roots, exploring themes of infinity, perception, and the limits of human understanding. Borges' use of aleph symbolizes the quest for knowledge and the paradoxes inherent in trying to comprehend the infinite.The philosophical implications of aleph are vast. It challenges our notions of reality and existence. If we consider aleph as a metaphor for the infinite possibilities within our lives, it encourages us to reflect on our choices and the paths we take. Just as there are countless points in space represented by aleph, there are countless experiences and opportunities available to us. This perspective can be both liberating and daunting, as it emphasizes the vastness of potential outcomes in our lives.In conclusion, the term aleph serves as a bridge between mathematics, literature, and philosophy. Its mathematical significance in set theory provides a foundation for understanding infinity, while its literary interpretations invite deeper reflections on existence and perception. As we navigate through life, the concept of aleph reminds us of the infinite possibilities that lie ahead, encouraging us to explore, question, and embrace the unknown. Whether we approach aleph from a mathematical standpoint or a literary one, it undeniably enriches our comprehension of the universe and our place within it.

在文学和数学的领域中,术语aleph占据着重要的位置。aleph这个概念源于集合论,由数学家乔治·康托尔在19世纪末提出。它代表着无限集合的基数。例如,最小的无限集合用aleph-零表示,对应于自然数的集合。这个思想彻底改变了我们对无限的理解,并在哲学、计算机科学甚至神学等多个领域产生了深远的影响。康托尔关于aleph的研究不仅为讨论不同大小的无限提供了数学框架,还引发了关于无限本质的辩论。可数无限和不可数无限之间的区别对于理解数学宇宙的结构至关重要。例如,aleph-一是所有可数序数的集合的基数,而aleph-二则代表一种更大的无限类型。超越数学,aleph也出现在文学作品中,尤其是在豪尔赫·路易斯·博尔赫斯的作品中。在他的故事《阿莱夫》中,博尔赫斯描述了一个空间中的点,包含了所有其他点,使一个人能够同时看到宇宙中的一切。这种对aleph的文学诠释超越了其数学根源,探讨了无限、感知和人类理解的极限等主题。博尔赫斯对aleph的使用象征着对知识的追求以及试图理解无限所固有的悖论。aleph的哲学意义是巨大的。它挑战了我们对现实和存在的看法。如果我们将aleph视为我们生活中无限可能性的隐喻,它鼓励我们反思我们的选择和采取的路径。正如在空间中有无数个由aleph表示的点一样,我们也有无数的经历和机会可供选择。这种观点既可以解放人心,也可能让人感到畏惧,因为它强调了我们生活中潜在结果的广泛性。总之,术语aleph在数学、文学和哲学之间架起了一座桥梁。它在集合论中的数学意义为理解无限提供了基础,而其文学诠释则邀请我们对存在和感知进行更深层次的思考。当我们在生活中航行时,aleph的概念提醒我们前方有无限的可能性,鼓励我们去探索、质疑和拥抱未知。无论我们从数学的角度还是文学的角度接近aleph,它无疑丰富了我们对宇宙及我们在其中位置的理解。