isoceles triangle

简明释义

二边相等的

英英释义

An isosceles triangle is a triangle that has at least two sides of equal length.

等腰三角形是指至少有两条边长度相等的三角形。

In an isosceles triangle, the angles opposite the equal sides are also equal.

在等腰三角形中,位于相等边对面的角度也相等。

例句

1.The architect designed the roof to resemble an isoceles triangle(等腰三角形) for aesthetic appeal.

建筑师设计的屋顶呈现出isoceles triangle(等腰三角形)的形状,以增加美感。

2.In art class, we were asked to create a painting that includes an isoceles triangle(等腰三角形) as part of the composition.

在美术课上,我们被要求创作一幅包含isoceles triangle(等腰三角形)作为构图一部分的画作。

3.During the math competition, one of the problems involved finding the angles in an isoceles triangle(等腰三角形).

在数学竞赛中,其中一个问题涉及到求解一个isoceles triangle(等腰三角形)的角度。

4.In geometry class, we learned that an isoceles triangle(等腰三角形) has two sides of equal length.

在几何课上,我们了解到一个isoceles triangle(等腰三角形)有两条相等的边。

5.To calculate the area of an isoceles triangle(等腰三角形), you can use the formula: 1/2 * base * height.

要计算isoceles triangle(等腰三角形)的面积,可以使用公式:1/2 * 底 * 高。

作文

In the realm of geometry, various shapes and figures play a crucial role in understanding spatial relationships and properties. One of the most fascinating shapes is the isoceles triangle, which has distinct characteristics that make it unique among other triangles. An isoceles triangle is defined as a triangle that has at least two sides of equal length. This property not only gives it a symmetric appearance but also leads to specific mathematical properties that are useful in various applications.The study of the isoceles triangle can be traced back to ancient civilizations, where mathematicians and philosophers explored the principles of geometry. The Greeks, in particular, made significant contributions to the understanding of triangles. They discovered that the angles opposite the equal sides of an isoceles triangle are also equal. This fundamental theorem is a cornerstone of triangle geometry and serves as a basis for many other geometric principles.One of the key aspects of the isoceles triangle is its symmetry. The line that bisects the angle between the two equal sides is not only an angle bisector but also acts as a median and an altitude. This means that it divides the isoceles triangle into two congruent right triangles, allowing for easier calculations of area and perimeter. The area of an isoceles triangle can be calculated using the formula: Area = (base × height) / 2. Understanding this formula is essential for solving problems related to the isoceles triangle in both academic and real-world scenarios.In practical applications, the isoceles triangle can be found in various fields, including architecture, engineering, and art. For example, many famous structures, such as the Eiffel Tower, incorporate triangular shapes in their design, often utilizing the isoceles triangle for stability and aesthetic appeal. Artists also use the isoceles triangle to create visually pleasing compositions, taking advantage of its balance and symmetry.Moreover, the isoceles triangle serves as a foundation for more complex geometric concepts. It is often used in trigonometry, where the relationships between the angles and sides are explored further. Trigonometric functions such as sine, cosine, and tangent can be applied to the isoceles triangle to solve for unknown lengths and angles, making it an essential tool in mathematics.In conclusion, the isoceles triangle is not just a simple geometric figure; it embodies a wealth of knowledge and practical application. Its properties of symmetry and equality make it a subject of interest in various fields, from mathematics to art. By understanding the isoceles triangle, we gain insight into the fundamental principles of geometry that govern our world. Whether in theoretical studies or real-life applications, the isoceles triangle continues to be a vital component in the exploration of shapes and their properties, enriching our understanding of mathematics and its relevance in everyday life.

在几何学的领域中,各种形状和图形在理解空间关系和性质方面发挥着至关重要的作用。其中一个最引人注目的形状是等腰三角形,它具有独特的特征,使其在其他三角形中脱颖而出。等腰三角形被定义为至少有两条边相等的三角形。这一性质不仅赋予它对称的外观,还导致了特定的数学属性,这些属性在各种应用中非常有用。对等腰三角形的研究可以追溯到古代文明,当时的数学家和哲学家探索几何原理。希腊人尤其对三角形的理解做出了重要贡献。他们发现,等腰三角形中与相等边相对的角也是相等的。这一基本定理是三角形几何学的基石,并作为许多其他几何原理的基础。等腰三角形的关键方面之一是其对称性。将两个相等边之间的角平分线不仅是角平分线,还充当中线和高。这意味着它将等腰三角形分成两个全等的直角三角形,从而使面积和周长的计算变得更容易。等腰三角形的面积可以使用公式计算:面积 = (底 × 高) / 2。理解这个公式对于解决与等腰三角形相关的问题非常重要,无论是在学术上还是在现实世界中。在实际应用中,等腰三角形可以在建筑、工程和艺术等多个领域找到。例如,许多著名的建筑,如埃菲尔铁塔,在设计中采用了三角形形状,常常利用等腰三角形来增强稳定性和美学吸引力。艺术家们也利用等腰三角形创造视觉上令人愉悦的作品,利用其平衡和对称性。此外,等腰三角形还作为更复杂的几何概念的基础。它通常用于三角学,在那里进一步探讨角和边之间的关系。正弦、余弦和正切等三角函数可以应用于等腰三角形,以求解未知的长度和角度,使其成为数学中的重要工具。总之,等腰三角形不仅仅是一个简单的几何图形;它蕴含着丰富的知识和实际应用。其对称性和平等性使其在多个领域中成为关注的主题,从数学到艺术。通过理解等腰三角形,我们深入了解支配我们世界的几何基本原理。无论是在理论研究还是现实应用中,等腰三角形仍然是探索形状及其特性的关键组成部分,丰富了我们对数学及其在日常生活中相关性的理解。

相关单词

triangle

triangle详解:怎么读、什么意思、用法