inverse back coupling

简明释义

负反馈

英英释义

Inverse back coupling refers to a feedback mechanism where the output of a system influences its input in a manner that opposes or counteracts the original signal.

逆向反馈耦合指的是一种反馈机制,其中系统的输出以相反或抵消原始信号的方式影响其输入。

例句

1.The system demonstrates inverse back coupling to stabilize the feedback loop.

该系统展示了反向反馈耦合以稳定反馈回路。

2.In this model, inverse back coupling plays a crucial role in maintaining equilibrium.

在这个模型中,反向反馈耦合在维持平衡中起着关键作用。

3.The phenomenon of inverse back coupling is often observed in complex adaptive systems.

在复杂自适应系统中,通常会观察到反向反馈耦合现象。

4.Researchers found that inverse back coupling can enhance system performance under certain conditions.

研究人员发现,在某些条件下,反向反馈耦合可以增强系统性能。

5.By applying inverse back coupling, we can reduce oscillations in the control system.

通过应用反向反馈耦合,我们可以减少控制系统中的振荡。

作文

In the realm of physics and engineering, the concept of inverse back coupling plays a significant role in understanding systems that are interdependent. To grasp this concept, it is essential to first comprehend what coupling means in general terms. Coupling refers to the interaction between two or more components of a system where the behavior of one component affects the others. In many cases, this relationship is direct and straightforward. However, inverse back coupling introduces a more complex dynamic where the feedback mechanism operates in the opposite direction. Essentially, it signifies that the output of a system can influence its input in a reverse manner, leading to unique outcomes.For instance, consider a simple electrical circuit where a resistor and a capacitor are coupled together. If the capacitor discharges, it can affect the current flowing through the resistor. This is a standard coupling scenario. However, if we introduce inverse back coupling, we might find that the resistor's behavior can also influence the charge on the capacitor, creating a feedback loop that alters the system's overall performance. This interplay can lead to oscillations or other unexpected behaviors that are crucial for designing stable systems.The implications of inverse back coupling extend beyond electrical circuits. In control systems, for example, engineers must account for how changes in output can feed back into the system's input. This understanding is vital for developing robust algorithms that maintain stability despite fluctuations in external conditions. An application of this concept can be seen in robotics, where the movement of a robotic arm may be influenced by the position of its joints. The feedback from the joints can modify the commands sent to the motors, demonstrating a clear case of inverse back coupling in action.Moreover, in biological systems, inverse back coupling is prevalent as well. For instance, in ecosystems, the population of a predator can inversely affect the population of its prey. If the predator population decreases, the prey population may increase, which in turn could lead to a subsequent increase in the predator population when food becomes abundant. This cyclical relationship showcases the complex interactions that can arise from inverse back coupling.Understanding inverse back coupling is not just an academic exercise; it has practical applications in various fields. In economics, for example, consumer behavior can inversely affect market trends. When consumers start buying less due to economic downturns, businesses may lower prices, which can then influence consumer purchasing behavior again, creating a feedback loop that impacts the economy at large.In conclusion, inverse back coupling is a crucial concept that illustrates the intricate relationships between different components within a system. Whether in engineering, biology, or economics, recognizing how outputs can influence inputs in reverse order allows for a deeper understanding of system dynamics. By studying these interdependencies, we can better design systems that are resilient and adaptable to change, ultimately leading to more effective solutions across various disciplines.

在物理和工程领域,逆向反馈耦合的概念在理解相互依赖的系统中扮演着重要角色。要掌握这一概念,首先必须理解耦合在一般术语中的含义。耦合指的是系统中两个或多个组件之间的相互作用,其中一个组件的行为会影响其他组件。在许多情况下,这种关系是直接且简单的。然而,逆向反馈耦合引入了一种更复杂的动态,其中反馈机制以相反的方向运作。本质上,它意味着系统的输出可以以反向方式影响其输入,从而导致独特的结果。例如,考虑一个简单的电路,其中电阻器和电容器相互耦合。如果电容器放电,它可以影响流过电阻器的电流。这是一个标准的耦合场景。然而,如果我们引入逆向反馈耦合,我们可能会发现电阻器的行为也可以影响电容器上的电荷,从而创建一个反馈回路,改变系统的整体性能。这种相互作用可能导致振荡或其他意想不到的行为,这对于设计稳定的系统至关重要。逆向反馈耦合的影响不仅限于电路。在控制系统中,工程师必须考虑输出的变化如何反馈到系统的输入中。这种理解对于开发能够在外部条件波动时保持稳定的强大算法至关重要。该概念的应用可以在机器人技术中看到,其中机器臂的运动可能受到其关节位置的影响。关节的反馈可以修改发送给电机的命令,展示了逆向反馈耦合在实际应用中的明确案例。此外,在生物系统中,逆向反馈耦合也很普遍。例如,在生态系统中,捕食者的数量可以反向影响其猎物的数量。如果捕食者的数量减少,猎物的数量可能会增加,这反过来又可能导致捕食者数量的增加,当食物变得丰富时。这种循环关系展示了逆向反馈耦合可能产生的复杂相互作用。理解逆向反馈耦合不仅仅是一个学术练习;它在各个领域都有实际应用。在经济学中,例如,消费者行为可以反向影响市场趋势。当消费者由于经济衰退开始减少购买时,企业可能会降低价格,这又可以影响消费者的购买行为,从而创造出一个反馈回路,影响整个经济。总之,逆向反馈耦合是一个关键概念,它说明了系统中不同组件之间复杂的关系。无论是在工程、生物学还是经济学中,认识到输出如何以反向方式影响输入,使我们能够更深入地理解系统动态。通过研究这些相互依赖关系,我们可以更好地设计出具有弹性和适应性的系统,最终在各个学科中找到更有效的解决方案。

相关单词

inverse

inverse详解:怎么读、什么意思、用法

coupling

coupling详解:怎么读、什么意思、用法