chemosmosis
简明释义
英[ˌkemɒzˈməʊsɪs]美[ˌkemɑːsˈmoʊsɪs]
n. 化学渗透作用
复 数 c h e m o s m o s e s
英英释义
单词用法
在化学渗透过程中 | |
在化学渗透中 | |
细胞中的化学渗透 | |
化学渗透与ATP合成 | |
膜内的化学渗透 | |
由化学渗透驱动的过程 |
同义词
化学渗透 | 化学渗透是细胞呼吸中的一个关键过程。 | ||
质子动力势 | The proton motive force drives ATP synthesis during chemiosmosis. | 质子动力势在化学渗透过程中驱动ATP合成。 |
反义词
例句
1.The process of energy production in mitochondria involves chemosmosis (化学渗透) to generate ATP.
线粒体中的能量生产过程涉及化学渗透(化学渗透)来生成ATP。
2.The role of chemosmosis (化学渗透) in ATP synthesis is a key concept in biochemistry.
在ATP合成中化学渗透(化学渗透)的作用是生物化学中的一个关键概念。
3.Understanding chemosmosis (化学渗透) is crucial for studying cellular respiration.
理解化学渗透(化学渗透)对于研究细胞呼吸至关重要。
4.During photosynthesis, plants utilize chemosmosis (化学渗透) to create glucose from sunlight.
在光合作用过程中,植物利用化学渗透(化学渗透)将阳光转化为葡萄糖。
5.In chloroplasts, chemosmosis (化学渗透) contributes to the formation of NADPH.
在叶绿体中,化学渗透(化学渗透)有助于NADPH的形成。
作文
In the realm of biology, the concept of chemosmosis plays a crucial role in understanding how living organisms generate energy. Chemosmosis refers to the movement of ions across a selectively permeable membrane, driven by an electrochemical gradient. This process is particularly significant in cellular respiration and photosynthesis, where it helps synthesize adenosine triphosphate (ATP), the energy currency of the cell.To grasp the importance of chemosmosis, we must first understand the structure of mitochondria and chloroplasts, the organelles responsible for energy production in eukaryotic cells. In mitochondria, the inner membrane contains proteins that facilitate the transport of electrons through the electron transport chain. As electrons move through this chain, protons are pumped from the mitochondrial matrix into the intermembrane space, creating a proton gradient. This gradient represents potential energy, which is harnessed during chemosmosis.When protons flow back into the mitochondrial matrix through ATP synthase, a protein complex embedded in the inner membrane, they drive the conversion of adenosine diphosphate (ADP) and inorganic phosphate into ATP. This process exemplifies how chemosmosis not only contributes to energy production but also illustrates the intricate relationship between structure and function within biological systems.Similarly, in chloroplasts, chemosmosis occurs during the light-dependent reactions of photosynthesis. When light energy is absorbed by chlorophyll, it excites electrons, initiating a series of reactions that lead to the pumping of protons into the thylakoid lumen. The resulting proton gradient is then utilized by ATP synthase to produce ATP, which is essential for the subsequent light-independent reactions, or the Calvin cycle. Thus, chemosmosis is a fundamental mechanism that underpins both cellular respiration and photosynthesis, showcasing the elegance of nature's design.Moreover, the implications of chemosmosis extend beyond energy production. Understanding this process has paved the way for advancements in bioengineering and medicine. For instance, researchers are exploring ways to manipulate chemosmosis to enhance the efficiency of biofuel production or to develop novel therapies for diseases related to mitochondrial dysfunction.In conclusion, chemosmosis is a vital process that highlights the interplay between energy transfer and cellular function. By facilitating the movement of ions across membranes, it enables the synthesis of ATP, thereby fueling various biological processes. As we continue to unravel the complexities of life at the molecular level, the significance of chemosmosis will undoubtedly remain a focal point in our quest to understand the mechanisms that sustain life on Earth.
在生物学领域,化学渗透的概念在理解生物体如何产生能量方面发挥着至关重要的作用。化学渗透是指离子通过选择性渗透膜的运动,由电化学梯度驱动。这个过程在细胞呼吸和光合作用中尤为重要,它帮助合成三磷酸腺苷(ATP),细胞的能量货币。要理解化学渗透的重要性,我们首先必须了解线粒体和叶绿体的结构,这些细胞器负责真核细胞中的能量生产。在线粒体中,内膜包含促进电子通过电子传递链的蛋白质。当电子沿着这一链移动时,质子被泵送出线粒体基质到膜间隙,形成质子梯度。这个梯度代表了潜在能量,在化学渗透过程中被利用。当质子通过嵌入内膜的ATP合酶流回线粒体基质时,它们驱动腺苷二磷酸(ADP)和无机磷酸盐转化为ATP。这一过程展示了化学渗透不仅有助于能量生产,还说明了生物系统中结构与功能之间的复杂关系。同样,在叶绿体中,化学渗透发生在光合作用的光反应阶段。当光能被叶绿素吸收时,它激发电子,启动一系列反应,导致质子被泵送到类囊体腔。由此产生的质子梯度随后被ATP合酶利用以产生ATP,这对随后的光独立反应或卡尔文循环至关重要。因此,化学渗透是支撑细胞呼吸和光合作用的基本机制,展示了自然设计的优雅。此外,化学渗透的影响超越了能量生产。理解这一过程为生物工程和医学的发展铺平了道路。例如,研究人员正在探索操控化学渗透以提高生物燃料生产效率或开发针对与线粒体功能障碍相关疾病的新疗法。总之,化学渗透是一个重要的过程,突显了能量转移与细胞功能之间的相互作用。通过促进离子跨膜运动,它使ATP的合成成为可能,从而为各种生物过程提供动力。随着我们继续揭示生命在分子层面的复杂性,化学渗透的重要性无疑将继续成为我们理解维持地球上生命机制的焦点。