protonation

简明释义

[ˌprəʊtəˈneɪʃən][ˌproʊtəˈneɪʃn]

n. 质子化作用,加质子作用

英英释义

The addition of a proton (H+) to a molecule, resulting in the formation of a positively charged ion or a cation.

将质子(H+)添加到分子中,导致形成带正电的离子或阳离子。

单词用法

protonation reaction

质子化反应

protonation state

质子化状态

protonation equilibrium

质子化平衡

undergo protonation

经历质子化

facilitate protonation

促进质子化

result in protonation

导致质子化

同义词

addition of a proton

质子添加

The process of protonation is crucial in acid-base chemistry.

质子化过程在酸碱化学中至关重要。

proton transfer

质子转移

Proton transfer reactions are fundamental in biological systems.

质子转移反应在生物系统中是基本的。

反义词

deprotonation

去质子化

Deprotonation is a key step in many organic reactions.

去质子化是许多有机反应中的关键步骤。

anion formation

负离子形成

The process of deprotonation can lead to the formation of anions.

去质子化过程可以导致负离子的形成。

例句

1.According to the mechanism, olefin protonation is a process of acid-alkali reaction, so the reaction is easy to happen when the acidity of catalyst and the basicity of olefin are very strong.

按此机理,烯烃的质子化是酸碱反应过程。因此,催化剂的酸性和烯烃的碱性均较强时对反应是有利的。

2.It is very important to determine the protonation constants of tetraphenylporphyrin derivatives for studying their colorful performance.

卟啉类试剂质子化常数的测定对于研究其显色性能有着重要的意义。

3.The result shows that both the protonation of the ligands and the formation of metal complexes are controlled by the change of enthalpy.

其结果显示了配体的质子化和金属配合物的形成受到焓变化的控制。

4.The structure and protonation level of conductive polyaniline (PANI) chemically synthesized in different reactive systems have been investigated using X-ray photoelectron spectroscopy (XPS).

采用X射线光电子能谱(XPS)方法对不同反应体系下化学合成的聚苯胺(PANI)的结构和掺杂状况进行了研究。

5.According to the mechanism, olefin protonation is a process of acid-alkali reaction, so the reaction is easy to happen when the acidity of catalyst and the basicity of olefin are very strong.

按此机理,烯烃的质子化是酸碱反应过程。因此,催化剂的酸性和烯烃的碱性均较强时对反应是有利的。

6.Both batch and kinetics experiments were conducted to study the relationship of protonation and dissolution of Al with proton buffering in 4 red soils of south China.

用平衡实验及动力学实验研究了我国南方4种红壤的表面质子化及铝的溶解与质子缓冲之间的关系。

7.The maximal emission wavelength changes into 400 nm. Further analysis demonstrated that the above changes arise from the variation of protonation states of OFL molecule.

质子化状态的不同会影响分子结构的共轭范围,进而对其荧光光谱和紫外可见光谱行为产生深刻影响。

8.The antibacterial ability of chitosan to E. coli was related to the protonation of amino group.

壳聚糖对大肠杆菌的抑菌作用与其氨基的质子化有关。

9.Influence of ionic strength, pH, etc. on the solubility, charge, and protonation of amino acids.

离子强度、酸碱度…等对氨基酸的溶解度、带电性与质子化的影响。

10.The protonation of amines can significantly affect their reactivity.

胺的质子化可以显著影响它们的反应性。

11.The rate of protonation can vary depending on the solvent used.

根据所用溶剂的不同,质子化的速率可能会有所不同。

12.In organic synthesis, protonation often determines the pathway of a reaction.

在有机合成中,质子化通常决定反应的路径。

13.The process of protonation is crucial in acid-base chemistry.

在酸碱化学中,质子化的过程至关重要。

14.During protonation, a proton is added to a molecule, altering its charge.

质子化过程中,一个质子被添加到分子上,从而改变其电荷。

作文

In the realm of chemistry, understanding the concept of protonation is essential for grasping many fundamental processes that occur in chemical reactions. Protonation, defined as the addition of a proton (H+) to a molecule, plays a crucial role in various chemical and biological systems. This process can significantly alter the properties of a molecule, influencing its reactivity, stability, and interaction with other species. For instance, in acid-base chemistry, protonation often determines whether a substance acts as an acid or a base. When a base accepts a proton, it undergoes protonation, transforming into its conjugate acid. This transformation is not merely a theoretical concept; it has real-world implications in fields ranging from pharmaceuticals to environmental science. In drug design, for example, the protonation state of a drug molecule can affect its solubility, permeability, and overall efficacy within the body. Understanding when and how protonation occurs allows chemists to predict the behavior of drugs under physiological conditions, ultimately aiding in the development of more effective treatments.Moreover, protonation is also vital in biochemical processes such as enzyme catalysis. Enzymes, which are biological catalysts, often rely on the reversible protonation and deprotonation of amino acid residues to facilitate chemical reactions. By altering the charge and polarity of these residues, enzymes can stabilize transition states and lower activation energy barriers, leading to faster reaction rates. This intricate balance of protonation and deprotonation is key to the efficiency of metabolic pathways and cellular functions.The significance of protonation extends beyond individual molecules; it also influences the behavior of entire systems. For example, in aqueous solutions, the pH level can dictate the extent of protonation of various solutes. A lower pH indicates a higher concentration of H+ ions, which can lead to increased protonation of basic compounds, thereby affecting their solubility and reactivity. Conversely, at higher pH levels, the availability of protons diminishes, resulting in decreased protonation and potentially altering the equilibrium of chemical reactions.Additionally, the concept of protonation is integral to understanding acid-base equilibria and the behavior of buffers in biological systems. Buffers, which resist changes in pH, often utilize weak acids and their conjugate bases to maintain stability. The protonation state of these species is crucial in determining how effectively they can neutralize excess acids or bases, ensuring that biological processes can proceed without disruption.In conclusion, protonation is a fundamental concept in chemistry that encompasses a wide range of applications and implications. From drug design to enzyme function and environmental chemistry, the ability to understand and manipulate protonation can lead to significant advancements in various scientific fields. As we continue to explore the intricacies of molecular interactions, the role of protonation will undoubtedly remain a pivotal topic of study, further illuminating the complexities of chemical behavior and reactivity.

在化学领域,理解质子化这一概念对于掌握许多基本过程至关重要,这些过程发生在化学反应中。质子化被定义为一个质子(H+)添加到一个分子上,它在各种化学和生物系统中发挥着关键作用。这个过程可以显著改变分子的性质,影响其反应性、稳定性以及与其他物质的相互作用。例如,在酸碱化学中,质子化通常决定一个物质是作为酸还是碱起作用。当一个碱接受一个质子时,它会经历质子化,转变为其共轭酸。这种转变不仅仅是一个理论概念;它在制药到环境科学等领域具有现实世界的意义。例如,在药物设计中,药物分子的质子化状态可以影响其在体内的溶解度、通透性和整体效能。理解何时以及如何发生质子化使化学家能够预测药物在生理条件下的行为,从而最终帮助开发出更有效的治疗方案。此外,质子化在酶催化等生化过程中也至关重要。酶作为生物催化剂,往往依赖于氨基酸残基的可逆质子化和脱质子化来促进化学反应。通过改变这些残基的电荷和极性,酶可以稳定过渡态并降低活化能障碍,从而导致更快的反应速率。这种质子化和脱质子化的微妙平衡是代谢途径和细胞功能高效运作的关键。质子化的重要性不仅局限于单个分子;它还影响整个系统的行为。例如,在水溶液中,pH水平可以决定各种溶质的质子化程度。较低的pH表示H+离子的浓度较高,这可能导致基本化合物的质子化增加,从而影响其溶解度和反应性。相反,在较高的pH水平下,质子的可用性减少,导致质子化减少,并可能改变化学反应的平衡。此外,质子化的概念对于理解酸碱平衡和生物系统中缓冲液的行为至关重要。缓冲液能够抵抗pH变化,通常利用弱酸及其共轭碱来维持稳定。这些物质的质子化状态对它们中和过量酸或碱的能力至关重要,从而确保生物过程能够顺利进行而不受干扰。总之,质子化是化学中的一个基本概念,涵盖了广泛的应用和含义。从药物设计到酶功能再到环境化学,理解和操控质子化的能力可以在各个科学领域带来重大进展。随着我们继续探索分子相互作用的复杂性,质子化的角色无疑将继续成为研究的关键主题,进一步阐明化学行为和反应性的复杂性。