horizontal root mean square

简明释义

径向均方差

英英释义

The horizontal root mean square (HRMS) refers to a statistical measure that calculates the square root of the average of the squares of a set of values, specifically focusing on the horizontal component or direction in a given dataset.

水平均方根(HRMS)是一个统计测量,计算一组值平方的平均值的平方根,特别关注于给定数据集中水平分量或方向。

例句

1.The horizontal root mean square 水平均方根 is crucial in evaluating the performance of mechanical systems under load.

在评估机械系统在负载下的性能时,水平均方根 horizontal root mean square是至关重要的。

2.When assessing soil settlement, the horizontal root mean square 水平均方根 can provide insights into potential shifts.

在评估土壤沉降时,水平均方根 horizontal root mean square可以提供潜在位移的见解。

3.The engineer calculated the horizontal root mean square 水平均方根 of the vibrations to ensure the stability of the structure.

工程师计算了振动的水平均方根 horizontal root mean square以确保结构的稳定性。

4.The horizontal root mean square 水平均方根 value helps in determining the effective power of the AC signals.

水平均方根 horizontal root mean square值有助于确定交流信号的有效功率。

5.In signal processing, the horizontal root mean square 水平均方根 is used to analyze the noise levels in a communication system.

在信号处理中,水平均方根 horizontal root mean square用于分析通信系统中的噪声水平。

作文

In the realm of data analysis and signal processing, various mathematical tools are employed to interpret complex datasets. One such tool is the horizontal root mean square, a statistical measure that provides insights into the magnitude of variations in a dataset. To understand its significance, we must first break down the components of this term. The term 'root mean square' (RMS) refers to a statistical measure that calculates the square root of the average of the squares of a set of values. It is particularly useful when dealing with varying quantities, as it provides a single value that represents the overall magnitude of the dataset. In many applications, including engineering and physics, the RMS value helps in assessing the power of an alternating current or the effectiveness of a signal.When we introduce the term 'horizontal' in conjunction with RMS, we often refer to a specific context where the data being analyzed is oriented horizontally, or where the focus is on horizontal measurements. For instance, in a graphical representation of data, the horizontal axis typically represents time or another independent variable, while the vertical axis represents the dependent variable. The horizontal root mean square thus becomes a critical measure in understanding how the values change over time or across different conditions.One practical application of the horizontal root mean square can be found in the field of audio engineering. When sound waves are recorded, they can exhibit fluctuations in amplitude. By calculating the horizontal root mean square of these amplitudes over a given period, audio engineers can determine the average power of the sound signal. This information is crucial for tasks such as mixing and mastering audio tracks, ensuring that the final product has the desired loudness and clarity.Moreover, the horizontal root mean square is also utilized in structural engineering. Engineers often need to assess the stability and strength of structures under various loads. By analyzing the horizontal forces acting on a structure and calculating their horizontal root mean square, engineers can predict how the structure will respond to different scenarios, such as wind pressure or seismic activity. This predictive capability is vital for designing safe and resilient buildings and infrastructure.Furthermore, in the field of meteorology, the horizontal root mean square can be applied to analyze weather patterns. Meteorologists may track changes in temperature, humidity, or wind speed over time and use the horizontal root mean square to quantify the variability of these parameters. This statistical measure helps in understanding trends and making forecasts, which are essential for preparing for severe weather events.In conclusion, the horizontal root mean square is a powerful statistical tool that finds applications across various fields, from audio engineering to structural design and meteorology. Its ability to summarize complex datasets into a single representative value allows professionals to make informed decisions based on the analysis of variations within their data. As technology continues to advance, the importance of such measures will only grow, enabling more sophisticated analyses and better outcomes in numerous disciplines.

在数据分析和信号处理的领域,各种数学工具被用来解读复杂的数据集。其中一个工具是水平均方根,这是一种统计测量,用于提供对数据集中变化幅度的洞察。要理解其重要性,我们必须首先分解这个术语的组成部分。术语“均方根”(RMS)指的是一种统计测量,它计算一组值平方的平均值的平方根。在处理变化数量时,它特别有用,因为它提供了一个单一的值来表示数据集的整体幅度。在许多应用中,包括工程和物理,RMS值有助于评估交流电的功率或信号的有效性。当我们在RMS的上下文中引入“水平”这个术语时,通常指的是分析的数据在水平方向上定向,或者关注于水平测量的特定上下文。例如,在数据的图形表示中,水平轴通常代表时间或其他自变量,而垂直轴代表因变量。因此,水平均方根成为理解数值随时间或不同条件变化的重要测量。水平均方根的一个实际应用可以在音频工程领域找到。当声音波被录制时,它们可能会表现出振幅的波动。通过计算这些振幅在给定时间段内的水平均方根,音频工程师可以确定声音信号的平均功率。这些信息对于混音和母带制作等任务至关重要,确保最终产品具有所需的响度和清晰度。此外,水平均方根还被用于结构工程。工程师通常需要评估结构在各种负载下的稳定性和强度。通过分析作用于结构的水平力并计算它们的水平均方根,工程师可以预测结构在不同情况下的反应,例如风压或地震活动。这种预测能力对于设计安全和韧性的建筑和基础设施至关重要。此外,在气象学领域,水平均方根可以用于分析天气模式。气象学家可能会跟踪温度、湿度或风速随时间的变化,并使用水平均方根来量化这些参数的变异性。这一统计测量有助于理解趋势和进行预测,这对于准备应对严重天气事件至关重要。总之,水平均方根是一种强大的统计工具,在音频工程、结构设计和气象学等多个领域都有应用。它将复杂数据集总结为一个代表性值的能力使专业人员能够根据对数据中变化的分析做出明智的决策。随着技术的不断进步,这种测量的重要性只会增加,从而在众多学科中实现更复杂的分析和更好的结果。

相关单词

horizontal

horizontal详解:怎么读、什么意思、用法