horizon system of coordinates
简明释义
地平坐标系
英英释义
例句
1.Using the horizon system of coordinates 水平坐标系, astronomers can easily locate celestial objects in the night sky.
通过使用水平坐标系 水平坐标系,天文学家可以轻松地在夜空中定位天体。
2.Navigators often rely on the horizon system of coordinates 水平坐标系 for accurate positioning at sea.
导航员通常依赖水平坐标系 水平坐标系 以便在海上进行准确定位。
3.In astronomy, the position of stars can be measured using the horizon system of coordinates 水平坐标系 to determine their altitude and azimuth.
在天文学中,可以使用水平坐标系 水平坐标系 来测量星星的位置,以确定它们的高度和方位。
4.The horizon system of coordinates 水平坐标系 is essential for pilots when determining their flight path relative to the earth's surface.
对于飞行员来说,水平坐标系 水平坐标系 在确定他们相对于地球表面的飞行路径时至关重要。
5.The horizon system of coordinates 水平坐标系 simplifies the process of tracking satellites as they orbit the Earth.
由于水平坐标系 水平坐标系 简化了跟踪卫星绕地球轨道的过程。
作文
The universe is a vast and complex space that has fascinated humanity for centuries. To navigate this expanse, astronomers have developed various systems of coordinates that help in pinpointing the location of celestial objects. One such system is the horizon system of coordinates, which is essential for understanding how we observe the night sky from our own vantage point on Earth. The horizon system of coordinates is based on the observer's local horizon, making it particularly useful for amateur astronomers and stargazers alike. In this system, celestial objects are located using two main coordinates: altitude and azimuth.Altitude refers to the angle of an object above the observer's local horizon. It ranges from 0 degrees, which is at the horizon itself, to 90 degrees, which is directly overhead. This measurement allows observers to determine how high an object is in the sky, which is crucial for locating stars, planets, and other celestial phenomena. For instance, if an observer sees a star at an altitude of 45 degrees, they know that the star is halfway between the horizon and the zenith, or the point directly above them.Azimuth, on the other hand, is the angle measured along the horizon, typically starting from true north. It is measured in degrees, ranging from 0 to 360. For example, an azimuth of 90 degrees indicates that the object is located due east, while an azimuth of 270 degrees would point to the west. By combining both altitude and azimuth, astronomers can accurately describe the position of any celestial body as seen from a specific location on Earth.One of the key advantages of the horizon system of coordinates is its relativity to the observer's position. Unlike other coordinate systems, such as the equatorial coordinate system, which is fixed to the celestial sphere, the horizon system of coordinates changes based on where the observer is standing. This makes it an intuitive choice for those observing the sky from different locations, as they can easily adjust their observations based on their immediate surroundings.However, the horizon system of coordinates does have its limitations. Since it is based on the observer's local horizon, it is not suitable for tracking the positions of celestial objects over longer periods. As the Earth rotates, objects will change their altitude and azimuth, which means that the same star may appear at different coordinates throughout the night. Therefore, while the horizon system of coordinates is excellent for short-term observations, astronomers often switch to other systems for long-term tracking and mapping.In conclusion, the horizon system of coordinates is a fundamental tool for anyone interested in astronomy. By providing a simple yet effective way to locate celestial objects based on the observer's position, it enhances our ability to explore the wonders of the night sky. Whether you are a seasoned astronomer or a curious beginner, understanding the horizon system of coordinates can greatly enrich your stargazing experience. As we continue to look up at the stars, this system remains a vital part of our journey in understanding the cosmos.
宇宙是一个广阔而复杂的空间,几个世纪以来一直吸引着人类。为了在这个广袤的空间中导航,天文学家们开发了各种坐标系统,帮助精确定位天体的位置。其中一个系统就是地平线坐标系统,它对于理解我们如何从地球的视角观察夜空至关重要。地平线坐标系统基于观察者的当地地平线,使其特别适合业余天文学家和星空观察者。在这个系统中,天体的位置通过两个主要坐标来确定:高度和方位。高度指的是天体在观察者当地地平线之上的角度。它的范围从0度(即在地平线上)到90度(即在正上方)。这个测量允许观察者确定天体在天空中的高度,对于定位恒星、行星和其他天体现象至关重要。例如,如果观察者看到一颗恒星的高度为45度,他们就知道这颗恒星位于地平线和天顶之间的中间位置。另一方面,方位是沿着地平线测量的角度,通常从真北开始测量。它以度数为单位,范围从0到360。例如,方位为90度表示该天体位于正东,而方位为270度则指向正西。通过结合高度和方位,天文学家可以准确描述任何天体在特定地点的相对位置。地平线坐标系统的一个主要优点是其相对于观察者位置的相对性。与固定在天球上的赤道坐标系统不同,地平线坐标系统会根据观察者所在的位置而变化。这使得它成为那些从不同地点观察天空的人的直观选择,因为他们可以根据周围环境轻松调整观察。然而,地平线坐标系统也有其局限性。由于它基于观察者的当地地平线,因此不适合长期跟踪天体的位置。随着地球的自转,天体的高度和方位会发生变化,这意味着同一颗恒星在整晚可能会出现不同的坐标。因此,尽管地平线坐标系统非常适合短期观察,天文学家通常会转向其他系统进行长期跟踪和绘图。总之,地平线坐标系统是任何对天文学感兴趣的人都必须掌握的基本工具。通过提供一种简单而有效的方法,根据观察者的位置定位天体,它增强了我们探索夜空奇观的能力。无论你是经验丰富的天文学家还是好奇的初学者,理解地平线坐标系统都能极大丰富你的观星体验。随着我们继续仰望星空,这一系统仍然是我们理解宇宙旅程中的重要部分。
相关单词