hollow dielectric waveguide

简明释义

中空介质波导管

英英释义

A hollow dielectric waveguide is a structure that guides electromagnetic waves, typically in the microwave or optical frequency range, where the guiding medium consists of a non-conductive material and has a hollow core.

空心介质波导是一种结构,用于引导电磁波,通常在微波或光学频率范围内,导引介质由非导电材料构成,并具有一个空心的核心。

例句

1.Researchers are exploring the use of a hollow dielectric waveguide 空心介质波导 for efficient light transport in optical systems.

研究人员正在探索使用空心介质波导 hollow dielectric waveguide在光学系统中实现高效光传输。

2.The hollow dielectric waveguide 空心介质波导 is particularly useful in reducing the weight of satellite communication systems.

空心介质波导 hollow dielectric waveguide在减轻卫星通信系统的重量方面特别有用。

3.A new application of the hollow dielectric waveguide 空心介质波导 is in the field of sensing technology.

在传感技术领域,空心介质波导 hollow dielectric waveguide有了新的应用。

4.The design of the hollow dielectric waveguide 空心介质波导 allows for minimal signal loss in high-frequency applications.

这种设计的空心介质波导 hollow dielectric waveguide可以在高频应用中实现最小信号损失。

5.In telecommunications, the hollow dielectric waveguide 空心介质波导 provides a robust solution for guiding microwaves.

在电信领域,空心介质波导 hollow dielectric waveguide为微波引导提供了可靠的解决方案。

作文

In the field of photonics and telecommunications, the concept of a hollow dielectric waveguide (空心介质波导) has emerged as a critical component for guiding light and other electromagnetic waves. A hollow dielectric waveguide is essentially a structure that allows the propagation of light through a hollow core surrounded by a dielectric material. This design offers several advantages over traditional solid waveguides, particularly in terms of reduced losses and increased flexibility in guiding different wavelengths of light.The basic principle behind a hollow dielectric waveguide is the phenomenon of total internal reflection. When light travels from a medium with a higher refractive index to one with a lower refractive index, it can be reflected back into the denser medium if the angle of incidence exceeds a certain threshold, known as the critical angle. In the case of a hollow dielectric waveguide, the core is typically air or vacuum, which has a much lower refractive index compared to the surrounding dielectric material. This configuration ensures that light remains confined within the core, allowing for efficient transmission over long distances.One of the key applications of hollow dielectric waveguides is in the development of high-power laser systems. Traditional solid-core waveguides can suffer from nonlinear effects and thermal damage when high-intensity light is transmitted. However, the hollow structure of a hollow dielectric waveguide minimizes these issues by reducing the effective area through which the light propagates, thus allowing for higher power densities without damaging the waveguide itself.Moreover, hollow dielectric waveguides are highly versatile and can be engineered to support a wide range of wavelengths, making them suitable for various applications in telecommunications, sensing, and medical technologies. For instance, they can be designed to operate in the infrared spectrum for use in fiber-optic communication systems or in the visible spectrum for imaging applications. This adaptability is one of the reasons why researchers are increasingly interested in hollow dielectric waveguides as a solution for future optical networks.Another significant advantage of hollow dielectric waveguides is their ability to integrate with other photonic components. They can be combined with filters, modulators, and detectors to create sophisticated systems for processing and transmitting information. This integration capability opens up new possibilities for developing compact and efficient devices that can handle large amounts of data at high speeds.Despite their many benefits, there are still challenges to overcome in the practical implementation of hollow dielectric waveguides. Manufacturing these structures with precise dimensions and maintaining the quality of the dielectric material are crucial for ensuring optimal performance. Additionally, researchers are exploring ways to enhance the efficiency of these waveguides further by incorporating advanced materials and fabrication techniques.In conclusion, the hollow dielectric waveguide (空心介质波导) represents a significant advancement in the field of optical technology. Its unique design and properties make it a promising candidate for a variety of applications, from telecommunications to medical devices. As research continues to evolve, we can expect to see more innovative uses of hollow dielectric waveguides that will shape the future of how we transmit and manipulate light.

在光子学和电信领域,空心介质波导的概念已成为引导光和其他电磁波的重要组成部分。空心介质波导本质上是一种结构,它允许光通过一个被介质材料包围的空心核心传播。这种设计相较于传统的固体波导具有多种优势,特别是在减少损耗和增加引导不同波长光的灵活性方面。空心介质波导的基本原理是全内反射现象。当光从一个折射率较高的介质传播到一个折射率较低的介质时,如果入射角超过某个阈值,即临界角,光可以被反射回更密集的介质。在空心介质波导的情况下,核心通常是空气或真空,其折射率远低于周围的介质材料。这种配置确保光保持在核心内,从而实现高效的长距离传输。空心介质波导的一个关键应用是在高功率激光系统的开发中。传统的固体核心波导在传输高强度光时可能会遭受非线性效应和热损伤。然而,空心介质波导的空心结构通过减少光传播的有效面积来最小化这些问题,从而允许在不损坏波导本身的情况下实现更高的功率密度。此外,空心介质波导具有高度的多功能性,可以工程化以支持广泛的波长,使其适用于电信、传感和医疗技术等各种应用。例如,它们可以设计为在红外光谱中工作,用于光纤通信系统,或在可见光谱中用于成像应用。这种适应性是研究人员日益关注空心介质波导作为未来光网络解决方案的原因之一。空心介质波导的另一个显著优势是它们与其他光子组件的集成能力。它们可以与滤波器、调制器和探测器结合,以创建复杂的系统,用于处理和传输信息。这种集成能力为开发能够以高速处理大量数据的紧凑高效设备开辟了新的可能性。尽管有许多好处,但在实际实施空心介质波导时仍然面临挑战。以精确的尺寸制造这些结构并保持介质材料的质量对于确保最佳性能至关重要。此外,研究人员正在探索通过采用先进材料和制造技术进一步提高这些波导的效率的方法。总之,空心介质波导代表了光技术领域的一项重大进展。其独特的设计和特性使其成为各种应用的有前途的候选者,从电信到医疗设备。随着研究的不断发展,我们可以期待看到更多创新的空心介质波导应用,这将塑造我们传输和操控光的未来。

相关单词

dielectric

dielectric详解:怎么读、什么意思、用法

waveguide

waveguide详解:怎么读、什么意思、用法