microstructural

简明释义

[ˌmaɪkrəʊˈstrʌktʃərəl][maɪkroʊˈstrʌktʃərəl]

adj. 显微结构的

英英释义

Relating to the microscopic structure of a material, especially in terms of its physical properties and behavior.

与材料的微观结构有关,特别是在其物理性质和行为方面。

单词用法

microstructural examination

微观结构检查

microstructural characterization

微观结构表征

microstructural investigation

微观结构研究

microstructural evolution

微观结构演变

microstructural level

微观结构层面

microstructural design

微观结构设计

microstructural defects

微观结构缺陷

microstructural scaling

微观结构缩放

同义词

microscopic

显微的

microscopic analysis

显微分析

nanoscale

纳米级的

nanoscale materials

纳米材料

substructural

亚结构的

substructural properties

亚结构特性

反义词

macrostructural

宏观结构的

The macrostructural analysis provides insights into the overall framework of the material.

宏观结构分析提供了对材料整体框架的洞察。

bulk

整体的

In bulk materials, properties are often averaged over larger scales rather than at the microstructural level.

在整体材料中,性能通常是在较大尺度上进行平均,而不是在微观结构层面。

例句

1.To determine the microstructural mechanical properties of W alloy is very important for the research and design of the alloy.

钨合金微观性能的测定对钨合金的研究和设计有着极其重要的意义。

2.Evaluation of the fired samples for oxidation percentage, weight loss, dense zone and microstructural characteristics of the zone is carried out.

对煅烧后的试样的氧化百分率、失重、致密层和致密层的显微结构特点作了鉴定。

3.The results show that amorphization of crystallite is the main form of microstructural evolution during thermal stabilization of PAN fibers.

结果表明,晶区的非晶化转变是原丝在预氧化过程中组织结构演变的主要形式;

4.The columnar to equiaxed transition (CET) is a kind of microstructural transformation in certain solidification, which should be controlled.

柱状晶向等轴晶转变(CET)是在一定的凝固过程中必须控制的一种显微组织转变。

5.Microstructural study revealed that the shape of ice crystal was different at different frozen temperature, which was the major reason for protein denaturation.

鱼糜微结构表明,不同温度冻藏条件下,鱼肉蛋白质中冰结晶大小有很大差异,冰晶的影响是导致蛋白质变性的主要原因。

6.Microstructural observations by microscope and SEM show that there exist whiskers in the ore after reduction.

用光学显微镜和扫描电镜观察了还原后矿石的微观结构变化,电镜下观察到“铁晶须”的存在。

7.The microstructural morphology of high vinyl polybutadiene (HVBR) and cis- polybutadiene rubber (BR) blends was observed by transmission electron microscope .

对高乙烯基聚丁二烯(HVBR)与顺丁橡胶(BR)共混胶进行了透射电镜观察。

8.The microstructural anomalies resulting from cadmium embrittlement can lead to component fractures in service.

隔脆化造成的微结构异常会导致部件在使用中断裂。

9.The dependence of the densification and the microstructural evolution of the composites on time, temperature, and sintering atmosphere were studied.

研究了各种烧结温度、时间、气氛条件下复合体的致密度和显微结构的改善。

10.Researchers used electron microscopy to analyze the microstructural features of the material.

研究人员使用电子显微镜分析材料的微观结构特征。

11.The study focused on the microstructural properties of the alloy, which determine its mechanical strength.

该研究集中于合金的微观结构特性,这决定了其机械强度。

12.The microstructural analysis revealed defects that could affect the performance of the component.

微观结构的分析揭示了可能影响组件性能的缺陷。

13.Understanding the microstructural changes during heating can help improve the manufacturing process.

了解加热过程中的微观结构变化可以帮助改善制造过程。

14.In this research, we examined the microstructural evolution of ceramics under different conditions.

在这项研究中,我们检查了陶瓷在不同条件下的微观结构演变。

作文

The study of materials science has greatly evolved over the years, leading to a deeper understanding of how different materials behave under various conditions. One of the critical aspects that researchers focus on is the microstructural (微观结构的) characteristics of materials. These characteristics play a pivotal role in determining the properties and performance of materials in practical applications. For instance, the microstructural (微观结构的) features of metals can significantly influence their strength, ductility, and resistance to wear and corrosion.In the field of metallurgy, the microstructural (微观结构的) analysis helps scientists and engineers develop stronger and more durable alloys. By manipulating the microstructural (微观结构的) composition during the manufacturing process, it is possible to enhance specific properties of the material. For example, adding carbon to iron creates steel, which has vastly improved strength and flexibility compared to pure iron. This transformation is predominantly attributed to the changes in the microstructural (微观结构的) arrangement of atoms and the formation of different phases within the alloy.Similarly, in the field of polymers, the microstructural (微观结构的) arrangement of polymer chains can lead to variations in their mechanical properties. The degree of crystallinity, for instance, is a microstructural (微观结构的) factor that affects the rigidity and thermal stability of polymer materials. Researchers often use techniques such as scanning electron microscopy and X-ray diffraction to investigate the microstructural (微观结构的) features of polymers, enabling them to tailor materials for specific applications, from packaging to aerospace components.Furthermore, the microstructural (微观结构的) properties of ceramics are equally crucial, especially in high-temperature applications. The grain size and distribution within the ceramic material can significantly impact its thermal and mechanical properties. By controlling the microstructural (微观结构的) aspects during the sintering process, manufacturers can produce ceramics that exhibit superior hardness and thermal shock resistance, making them ideal for use in cutting tools and engine components.In recent years, advancements in technology have allowed for more sophisticated analyses of microstructural (微观结构的) features. Techniques such as electron backscatter diffraction and atomic force microscopy provide insights into the microstructural (微观结构的) behavior of materials at the atomic level. This information is invaluable for developing new materials that meet the ever-increasing demands of modern engineering applications.In conclusion, the exploration of microstructural (微观结构的) characteristics is essential in the field of materials science. By understanding how microstructural (微观结构的) features affect material properties, scientists and engineers can innovate and improve materials for a wide range of applications. As research continues to advance, the ability to manipulate microstructural (微观结构的) properties will undoubtedly lead to the development of even more advanced materials, further pushing the boundaries of technology and engineering.

材料科学的研究在过去几年中得到了极大的发展,使我们对不同材料在各种条件下的行为有了更深入的理解。研究人员关注的一个关键方面是材料的微观结构的特征。这些特征在决定材料在实际应用中的属性和性能方面起着关键作用。例如,金属的微观结构的特征可以显著影响其强度、延展性以及抗磨损和腐蚀的能力。在冶金学领域,微观结构的分析帮助科学家和工程师开发出更强大和更耐用的合金。通过在制造过程中操控微观结构的组成,可以增强材料的特定性能。例如,向铁中添加碳会产生钢,这种材料相比纯铁具有大幅提高的强度和灵活性。这种转变主要归因于原子排列的微观结构的变化以及合金内部不同相的形成。同样,在聚合物领域,聚合物链的微观结构的排列可能导致其机械性能的变化。例如,结晶度的高低是一个微观结构的因素,它影响聚合物材料的刚性和热稳定性。研究人员通常使用扫描电子显微镜和X射线衍射等技术来研究聚合物的微观结构的特征,使他们能够为特定应用量身定制材料,从包装到航空航天组件。此外,陶瓷的微观结构的特性同样至关重要,特别是在高温应用中。陶瓷材料中的晶粒大小和分布可以显著影响其热和机械性能。通过控制烧结过程中的微观结构的方面,制造商可以生产出表现出优越硬度和热冲击抗性的陶瓷,使其理想用于切削工具和发动机部件。近年来,技术的进步使得对微观结构的特征进行更复杂的分析成为可能。电子背散射衍射和原子力显微镜等技术提供了对材料在原子级别上的微观结构的行为的洞察。这些信息对开发满足现代工程应用日益增长的需求的新材料至关重要。总之,探索微观结构的特征在材料科学领域至关重要。通过理解微观结构的特征如何影响材料性能,科学家和工程师能够创新和改进广泛应用的材料。随着研究的不断推进,操控微观结构的特性的能力无疑将导致更先进材料的发展,进一步推动技术和工程的边界。