highest obtainable temperature
简明释义
可达最高温度
英英释义
The maximum temperature that can be achieved under specific conditions, often limited by physical or chemical constraints. | 在特定条件下可以达到的最高温度,通常受到物理或化学限制。 |
例句
1.Engineers designed the engine to withstand the highest obtainable temperature 最高可获得温度 during operation.
工程师设计发动机以承受运行期间的最高可获得温度 最高可获得温度。
2.In the lab, we need to determine the highest obtainable temperature 最高可获得温度 for our new chemical compound.
在实验室,我们需要确定我们新化合物的最高可获得温度 最高可获得温度。
3.The researchers found that the highest obtainable temperature 最高可获得温度 for this material was 1500 degrees Celsius.
研究人员发现这种材料的最高可获得温度 最高可获得温度为1500摄氏度。
4.To optimize performance, we must know the highest obtainable temperature 最高可获得温度 of the system.
为了优化性能,我们必须知道系统的最高可获得温度 最高可获得温度。
5.The highest obtainable temperature 最高可获得温度 in this furnace is crucial for achieving optimal results.
这个炉子的最高可获得温度 最高可获得温度对实现最佳结果至关重要。
作文
In the realm of science, particularly in thermodynamics, the concept of the highest obtainable temperature plays a crucial role in understanding the limits of heat and energy. This term refers to the maximum temperature that can be achieved under specific conditions, governed by the laws of physics. To grasp this idea, we must explore several key principles that underline the behavior of matter at extreme temperatures.Firstly, the highest obtainable temperature is intrinsically linked to the kinetic theory of gases. According to this theory, temperature is a measure of the average kinetic energy of particles in a substance. As we increase the temperature, the particles move faster and collide more vigorously. However, there comes a point where further increases in temperature do not result in higher kinetic energy due to the limitations imposed by the physical properties of the materials involved.One of the most significant milestones in our understanding of temperature limits is the concept of absolute zero. At this theoretical temperature, which is 0 Kelvin or -273.15 degrees Celsius, all molecular motion ceases. While we can approach this temperature in controlled environments, achieving it remains impossible. Thus, the highest obtainable temperature must always be considered in relation to absolute zero, as it defines the lower boundary of thermal energy.Moreover, the highest obtainable temperature is also influenced by the phase of the matter being studied. For instance, different substances exhibit varying thermal behaviors; metals may reach higher temperatures before melting compared to non-metals. This variance is essential in applications such as metallurgy and material science, where knowing the highest obtainable temperature for specific materials can determine their suitability for high-temperature applications.In practical terms, researchers have sought to achieve higher temperatures through various methods, including laser heating and particle collisions in accelerators. One noteworthy achievement occurred at the Large Hadron Collider (LHC), where scientists managed to create temperatures exceeding several trillion degrees Celsius, mimicking conditions just after the Big Bang. Such experiments push the boundaries of what we understand about the universe and the fundamental forces that govern it.The implications of reaching the highest obtainable temperature extend beyond mere scientific curiosity. They have profound effects on technology, energy production, and even our understanding of the cosmos. For example, advancements in fusion energy rely heavily on achieving and maintaining extremely high temperatures to facilitate the fusion of atomic nuclei, which could provide a near-limitless source of clean energy.In conclusion, the concept of the highest obtainable temperature encapsulates a fascinating intersection of theory and application in the field of science. It challenges our understanding of the physical world and drives innovation in technology. As we continue to explore the extremes of temperature, we not only expand our scientific knowledge but also pave the way for future advancements that could transform our lives. Understanding the highest obtainable temperature is not just an academic pursuit; it is a vital component of our quest to harness the power of nature itself.
在科学领域,特别是热力学中,最高可获得温度的概念在理解热量和能量的极限方面起着至关重要的作用。这个术语指的是在特定条件下可以达到的最高温度,受物理法则的支配。要理解这个概念,我们必须探讨几个关键原则,这些原则阐明了物质在极端温度下的行为。首先,最高可获得温度与气体的动理论密切相关。根据这一理论,温度是物质中粒子平均动能的衡量标准。当我们提高温度时,粒子的运动速度加快,碰撞变得更加剧烈。然而,随着温度的进一步升高,由于材料的物理特性所施加的限制,温度的增加不会导致更高的动能。我们对温度极限理解的重要里程碑之一是绝对零度的概念。在这一理论温度下,即0开尔文或-273.15摄氏度,所有分子运动停止。虽然我们可以在受控环境中接近这一温度,但实现它仍然是不可能的。因此,最高可获得温度总是必须考虑到绝对零度,因为它定义了热能的下界。此外,最高可获得温度还受到所研究物质相位的影响。例如,不同物质表现出不同的热行为;金属在熔化前可能会达到比非金属更高的温度。这种差异在冶金和材料科学等应用中至关重要,了解特定材料的最高可获得温度可以决定它们在高温应用中的适用性。在实际操作中,研究人员通过激光加热和加速器中的粒子碰撞等多种方法寻求实现更高的温度。其中一个值得注意的成就是在大型强子对撞机(LHC)中,科学家们成功创造了超过几万亿摄氏度的温度,模拟了大爆炸后不久的条件。这类实验推动了我们对宇宙及其基本力量的理解的边界。达到最高可获得温度的意义超越了单纯的科学好奇心。它对技术、能源生产甚至我们对宇宙的理解产生了深远的影响。例如,核聚变能源的进步在很大程度上依赖于实现和维持极高的温度,以促进原子核的聚变,这可能提供近乎无尽的清洁能源。总之,最高可获得温度的概念在科学领域中涵盖了理论与应用的迷人交汇点。它挑战了我们对物理世界的理解,并推动了技术创新。随着我们继续探索温度的极限,我们不仅扩展了科学知识,还为未来的进步铺平了道路,这些进步可能会改变我们的生活。理解最高可获得温度不仅仅是学术追求;它是我们利用自然力量的关键组成部分。
相关单词