submillimeter

简明释义

[sʌbˈmɪlɪˌmiːtə][sʌbˈmɪləmɪtər]

n. 亚毫米

英英释义

Relating to wavelengths or measurements that are less than one millimeter.

与小于一毫米的波长或测量相关的。

单词用法

submillimeter radiation

亚毫米辐射

submillimeter detectors

亚毫米探测器

submillimeter imaging

亚毫米成像

submillimeter spectroscopy

亚毫米光谱学

submillimeter wave

亚毫米波

submillimeter telescope

亚毫米望远镜

submillimeter source

亚毫米源

submillimeter frequency

亚毫米频率

同义词

submillimetric

亚毫米的

Submillimeter astronomy studies celestial objects using submillimetric wavelengths.

亚毫米天文学使用亚毫米波长研究天体。

submillimeter-scale

亚毫米尺度的

Submillimeter-scale technologies are important in the field of photonics.

亚毫米尺度技术在光子学领域中非常重要。

反义词

millimeter

毫米

The measurement of the object is 5 millimeters.

这个物体的测量为5毫米。

centimeter

厘米

The length of the table is 1.5 centimeters.

这张桌子的长度是1.5厘米。

meter

The height of the building is 20 meters.

这栋建筑的高度是20米。

例句

1.The specific property of atmospheric transmission at near submillimeter band is studied.

主要研究了在近亚毫米波段的大气传输特性。

2.A submillimeter wave (SMMW) beam field distribution automatic measurement system using a scanning mirror with microcomputer control has been built and studied.

研究一种采用反射镜扫描方法由微机控制的亚毫米波场分布自动测量系统。

3.In this paper, a circular-scan time analyzer to be used in the satellite laser ranging system with ranging accuracy of submillimeter, has been developed.

在本文中,我们设计并研制了用于毫米级精度人卫激光测距的圆扫描时间分析系统。

4.There are already robot systems that can perform some kinds of brain and bone surgery with submillimeter accuracy--far greater precision than highly skilled physicians can achieve with their hands.

现在已有机器人系统能够精确到毫米的脑部和骨骼手术——这要比极具技巧的医生单单用手精确得多。

5.The theory of the dielectric dispersion of insulators is reviewed with special emphasis on the infrared and submillimeter-wave spectral regions.

对绝缘体的介电色散理论进行了评述,特别注重于红外和亚毫米波段。

6.The submillimeter wave plays a very important role between the infrared and millimeter wave in electromagnetic wave frequency spectrum. Therefore, it has important academic value.

亚毫米波在电磁波频谱中处于红外线与毫米波之间非常重要的位置,因此在学术上有很重要的研究价值。

7.According to Gebhardt, using such a "whole Earth submillimeter interferometer" may actually detect the silhouette of the black hole's event horizon against the galaxy's background glow.

据格布·哈特说,这样利用“全球的亚毫米波干涉仪”,有可能真正地探测到这个黑洞视界的轮廓显现于星系的背景光之中。

8.In materials science, researchers are investigating submillimeter 亚毫米 structures for their unique properties.

在材料科学中,研究人员正在研究亚毫米结构的独特性质。

9.The astronomers used a submillimeter 亚毫米 telescope to study the formation of distant galaxies.

天文学家使用了一台亚毫米望远镜来研究遥远星系的形成。

10.The submillimeter 亚毫米 wave technology is crucial for improving wireless communication.

亚毫米波技术对改善无线通信至关重要。

11.Using submillimeter 亚毫米 imaging, scientists can observe biological processes at a much finer scale.

利用亚毫米成像,科学家可以在更精细的尺度上观察生物过程。

12.The submillimeter 亚毫米 range is essential for certain types of spectroscopy.

对于某些类型的光谱学来说,亚毫米范围是必不可少的。

作文

In recent years, the field of astronomy has witnessed significant advancements, particularly in the study of celestial bodies through various wavelengths of electromagnetic radiation. Among these wavelengths, the submillimeter (亚毫米) range has gained increasing attention due to its unique properties and applications. The submillimeter (亚毫米) region, which lies between infrared and microwave frequencies, allows astronomers to observe phenomena that are otherwise obscured at optical wavelengths. This capability is crucial for understanding the formation of stars and galaxies, as well as the chemical composition of interstellar matter.One of the primary advantages of submillimeter (亚毫米) observations is their ability to penetrate dense clouds of gas and dust. Traditional optical telescopes struggle to see through these opaque regions, but submillimeter (亚毫米) telescopes can reveal the hidden processes occurring within them. For instance, when studying star formation, scientists can detect the cool gas and dust that serve as the building blocks of new stars. This insight is essential for developing a comprehensive model of how stars evolve over time.The submillimeter (亚毫米) wavelength range is also instrumental in studying the early universe. By observing distant galaxies emitting submillimeter (亚毫米) radiation, astronomers can gather information about the conditions that existed shortly after the Big Bang. These observations help researchers understand the rate of star formation in the early universe and provide clues about the overall evolution of cosmic structures.Moreover, the technological advancements in submillimeter (亚毫米) instrumentation have opened new avenues for research. The development of sensitive detectors and large-format arrays has significantly improved the capabilities of submillimeter (亚毫米) telescopes. Instruments such as the Atacama Large Millimeter/submillimeter Array (ALMA) have revolutionized our ability to conduct high-resolution imaging and spectroscopy in this wavelength range. ALMA, located in the Chilean Andes, consists of an array of 66 antennas that work together to capture detailed images of astronomical objects.In addition to astronomy, the submillimeter (亚毫米) range has applications in other fields, such as materials science and biology. For example, researchers utilize submillimeter (亚毫米) imaging techniques to study the properties of various materials at a microscopic level. This can lead to advancements in fields like nanotechnology and semiconductor research. Furthermore, in biology, submillimeter (亚毫米) radiation can be used in medical imaging and treatment, providing a non-invasive method to examine biological tissues.As we continue to explore the universe and our surrounding environment, the importance of submillimeter (亚毫米) research cannot be overstated. It bridges gaps in our understanding and offers insights into both the cosmos and the materials that compose our world. The ongoing development of submillimeter (亚毫米) technology promises to enhance our observational capabilities, enabling future discoveries that could reshape our comprehension of fundamental cosmic processes and the nature of matter itself. In conclusion, the submillimeter (亚毫米) range represents a frontier in scientific research, one that holds the potential to answer some of the most profound questions about the universe and our place within it.

近年来,天文学领域见证了重大进展,尤其是在通过各种电磁辐射波长研究天体方面。在这些波长中,submillimeter(亚毫米)范围因其独特的属性和应用而受到越来越多的关注。submillimeter(亚毫米)区域位于红外线和微波频率之间,使天文学家能够观察在光学波长下被遮蔽的现象。这种能力对理解恒星和星系的形成以及星际物质的化学成分至关重要。submillimeter(亚毫米)观测的主要优势之一是其穿透致密气体和尘埃云的能力。传统的光学望远镜难以看透这些不透明区域,但submillimeter(亚毫米)望远镜可以揭示其中隐藏的过程。例如,在研究恒星形成时,科学家可以探测作为新恒星构建块的冷气体和尘埃。这一见解对于制定全面的恒星演变模型至关重要。submillimeter(亚毫米)波长范围在研究早期宇宙方面也至关重要。通过观察发出submillimeter(亚毫米)辐射的遥远星系,天文学家可以收集关于大爆炸后存在的条件的信息。这些观测帮助研究人员了解早期宇宙中的恒星形成速率,并提供关于宇宙结构整体演变的线索。此外,submillimeter(亚毫米)仪器的技术进步为研究开辟了新的途径。灵敏探测器和大格式阵列的发展显著提高了submillimeter(亚毫米)望远镜的能力。像阿塔卡马大型毫米/亚毫米阵列(ALMA)这样的仪器彻底改变了我们在这一波长范围内进行高分辨率成像和光谱学的能力。ALMA位于智利安第斯山脉,由66个天线组成,协同工作以捕获天文物体的详细图像。除了天文学,submillimeter(亚毫米)范围在其他领域也有应用,如材料科学和生物学。例如,研究人员利用submillimeter(亚毫米)成像技术研究各种材料的微观特性。这可以推动纳米技术和半导体研究等领域的进展。此外,在生物学中,submillimeter(亚毫米)辐射可用于医学成像和治疗,提供一种非侵入性的方法来检查生物组织。随着我们继续探索宇宙和周围环境,submillimeter(亚毫米)研究的重要性不容低估。它弥合了我们理解的空白,并提供了对宇宙及构成我们世界的材料的深刻见解。submillimeter(亚毫米)技术的持续发展有望增强我们的观测能力,使未来的发现能够重新塑造我们对基本宇宙过程和物质本质的理解。总之,submillimeter(亚毫米)范围代表了科学研究的前沿,蕴含着回答关于宇宙及我们在其中位置的一些最深刻问题的潜力。