Hertzian oscillator

简明释义

赫兹振荡器

英英释义

A Hertzian oscillator is a theoretical model of an electrical circuit that generates electromagnetic waves, named after Heinrich Hertz, who first demonstrated the existence of such waves.

赫兹振荡器是一个理论模型,描述了一种生成电磁波的电路,以首次证明此类波存在的海因里希·赫兹命名。

例句

1.Understanding the behavior of a Hertzian oscillator is crucial for developing better antennas.

理解赫兹振荡器的行为对于开发更好的天线至关重要。

2.The frequency of a Hertzian oscillator can be adjusted to tune into different radio stations.

赫兹振荡器的频率可以调整,以调谐到不同的广播电台。

3.In our physics lab, we built a simple Hertzian oscillator to demonstrate electromagnetic waves.

在我们的物理实验室中,我们构建了一个简单的赫兹振荡器来演示电磁波。

4.The design of the radio transmitter relies heavily on the principles of a Hertzian oscillator.

无线电发射机的设计在很大程度上依赖于赫兹振荡器的原理。

5.A Hertzian oscillator generates alternating current at a specific frequency.

赫兹振荡器以特定频率生成交流电。

作文

The concept of a Hertzian oscillator is fundamental in the study of electromagnetic waves and radio frequency technology. Named after the German physicist Heinrich Hertz, who first demonstrated the existence of electromagnetic waves in the late 19th century, the Hertzian oscillator serves as a model for understanding how these waves are generated and propagated. In essence, a Hertzian oscillator is an idealized electrical circuit that can generate oscillating electromagnetic fields, which can then radiate energy into space as radio waves.To comprehend the workings of a Hertzian oscillator, it is essential to understand the basic components involved. Typically, it consists of a conductive element, such as an antenna, connected to a power source. When the power source energizes the antenna, it creates an electric field. As the electric field changes, it induces a magnetic field, and this interplay between electric and magnetic fields produces oscillations. These oscillations occur at a specific frequency, which is determined by the physical characteristics of the circuit, including its inductance and capacitance.The significance of the Hertzian oscillator extends beyond theoretical physics; it has practical applications in various technologies today. For example, radio transmitters utilize the principles of the Hertzian oscillator to send signals over long distances. By modulating the frequency of the oscillations, information can be encoded onto the electromagnetic waves and transmitted through the air, where it can be received by antennas tuned to the same frequency.Moreover, the Hertzian oscillator also plays a crucial role in wireless communication systems, including Wi-Fi and cellular networks. The ability to generate and manipulate electromagnetic waves allows devices to communicate without physical connections, revolutionizing how we interact with technology. The development of modern communication systems owes much to the foundational principles laid out by the Hertzian oscillator.In addition to telecommunications, Hertzian oscillators are used in various scientific research applications. For instance, in experimental physics, researchers may employ these oscillators to study the properties of materials or to explore new phenomena in electromagnetism. The ability to generate precise frequencies enables scientists to conduct experiments that require specific conditions, leading to advancements in both theoretical and applied physics.However, it's important to note that real-world oscillators often deviate from the idealized model of a Hertzian oscillator. Factors such as resistance, non-linearities, and environmental influences can affect the performance of actual oscillators. Engineers must account for these variables when designing circuits for practical applications, ensuring that the desired frequency and power output are achieved despite potential disruptions.In summary, the Hertzian oscillator is a vital concept in the realm of electromagnetism, serving as a cornerstone for both theoretical understanding and practical applications. From enabling wireless communication to facilitating scientific research, the principles behind the Hertzian oscillator continue to influence a wide array of technologies. As we advance further into the future, the legacy of Heinrich Hertz's work remains evident in the connectivity and innovations that define our modern world.

‘赫兹振荡器’的概念在电磁波和射频技术的研究中是基础性的。这个名字来源于德国物理学家海因里希·赫兹,他在19世纪末首次证明了电磁波的存在。‘赫兹振荡器’作为一个模型,帮助我们理解这些波是如何生成和传播的。简单来说,‘赫兹振荡器’是一个理想化的电路,可以产生振荡的电磁场,并将能量以无线电波的形式辐射到空间中。要理解‘赫兹振荡器’的工作原理,首先需要了解其中涉及的基本组件。通常,它由一个导电元素,例如天线,连接到一个电源。当电源为天线供电时,会产生一个电场。随着电场的变化,会诱导出一个磁场,而电场与磁场之间的相互作用产生了振荡。这些振荡发生在特定的频率上,这个频率由电路的物理特性决定,包括其电感和电容。‘赫兹振荡器’的重要性不仅体现在理论物理上;它在今天的各种技术中也有实际应用。例如,无线电发射机利用‘赫兹振荡器’的原理将信号发送到远处。通过调制振荡的频率,可以将信息编码到电磁波中,并通过空气传输,接收天线可以接收到相同频率的信号。此外,‘赫兹振荡器’在无线通信系统中也发挥着关键作用,包括Wi-Fi和蜂窝网络。生成和操控电磁波的能力使得设备能够在没有物理连接的情况下进行通信,彻底改变了我们与技术的互动方式。现代通信系统的发展在很大程度上归功于‘赫兹振荡器’所奠定的基础原则。除了电信之外,‘赫兹振荡器’还被用于各种科学研究应用中。例如,在实验物理学中,研究人员可能会使用这些振荡器来研究材料的性质或探索电磁学中的新现象。生成精确频率的能力使得科学家能够进行需要特定条件的实验,从而促进理论和应用物理的进步。然而,需要注意的是,现实世界中的振荡器往往偏离理想化的‘赫兹振荡器’模型。电阻、非线性和环境影响等因素可能会影响实际振荡器的性能。工程师在设计实际应用电路时必须考虑这些变量,以确保尽管存在潜在干扰,仍能实现所需的频率和功率输出。总之,‘赫兹振荡器’是电磁学领域的一个重要概念,是理论理解和实际应用的基石。从实现无线通信到促进科学研究,‘赫兹振荡器’背后的原理继续影响着广泛的技术。随着我们进一步迈向未来,海因里希·赫兹工作的遗产在定义我们现代世界的连接性和创新中依然显而易见。

相关单词

oscillator

oscillator详解:怎么读、什么意思、用法