nitrobacteria
简明释义
英[ˌnaɪtrəʊbækˈtɪəriə]美[ˌnaɪtrobækˈtɪrɪə]
n. [微] 硝化细菌
英英释义
Nitrobacteria are a type of bacteria that oxidize nitrite to nitrate during the process of nitrification, playing a crucial role in the nitrogen cycle. | 硝化细菌是一类在硝化过程中将亚硝酸盐氧化为硝酸盐的细菌,在氮循环中发挥着重要作用。 |
单词用法
硝化细菌种类 | |
硝化细菌的生长 | |
硝化细菌的作用 | |
硝化细菌种群 | |
硝化细菌的活性 | |
土壤中的硝化细菌 |
同义词
硝化细菌 | Nitrifying bacteria play a crucial role in the nitrogen cycle. | 硝化细菌在氮循环中起着至关重要的作用。 | |
氨氧化细菌 | 氨氧化细菌将氨转化为亚硝酸盐。 |
反义词
例句
1.Main conclusions educed from this experiment were as follows:1. The effect of different fertilizing treatments on soil ammonifying bacteria, nitrobacteria, denitrobacteria was significant.
本试验得出的主要结论有:1。不同培肥处理对土壤自生固氮细菌、土壤氨化细菌、硝化细菌、反硝化细菌影响差异显著。
2.However, as nitrobacteria can gradually adapt the inhibition caused by FA, however, it is not stable enough to achieve nitrite accumulation merely depending on the increase of FA concentration.
合适浓度的FA有助于亚硝酸盐的积累,但是,由于硝酸菌能够对FA产生的抑制作用逐渐适应,单纯靠增加FA浓度来实现硝酸盐的积累是不稳定的。
3.By immobilizing the enriched nitrobacteria separately, the feasibility of applying microorganism immobilization technology to the denitrification of coking wastewater is studied.
通过把富集培养的硝化细菌单独固定化,进行了固定化用于焦化废水脱氮的可行性研究。
4.In the end, the basic change of the water quality is deserved. On the basis of those, the eutrophication waters can be repaired by precipitum and nitrobacteria.
在了解水体水质变化状况的基础上,利用消氮细菌及沉淀细菌对实验水体进行生物修复。
5.This paper describes the harm to the circulating water system in synthetic ammonia plant caused by the leaking of ammonia and nitrobacteria, and relative countermeasures are presented.
介绍了合成氨厂循环水系统漏氨较为严重时对杀菌灭藻的危害以及硝化菌群对系统的影响,提出搞好循环水系统运行的一些措施。
6.However, as nitrobacteria can gradually adapt the inhibition caused by FA, however, it is not stable enough to achieve nitrite accumulation merely depending on the increase of FA concentration.
合适浓度的FA有助于亚硝酸盐的积累,但是,由于硝酸菌能够对FA产生的抑制作用逐渐适应,单纯靠增加FA浓度来实现硝酸盐的积累是不稳定的。
7.Immobilized nitrobacteria were cultivated in the fluidized bed while nitrobacteria in the bio-film grew on the elastic plastic media in the fixed bed.
固定化包埋硝化菌在流化床内培养,生物膜反应器内的硝化菌以生物膜的形式附着在软性填料上生长。
8.To oxidize (an ammonia compound) into nitric acid, nitrous acid, or any nitrate or nitrite, especially by the action of nitrobacteria.
通过硝化细菌的作用将氨的化合物氧化成硝酸盐的过程。
9.In aquaponics systems, nitrobacteria (亚硝化细菌) play a crucial role in maintaining water quality.
在水培系统中,nitrobacteria(亚硝化细菌)在维持水质方面起着关键作用。
10.The presence of nitrobacteria (亚硝化细菌) in the soil is essential for converting ammonia into nitrites.
土壤中存在的nitrobacteria(亚硝化细菌)对将氨转化为亚硝酸盐至关重要。
11.The study of nitrobacteria (亚硝化细菌) is important for understanding nitrogen cycles in ecosystems.
对nitrobacteria(亚硝化细菌)的研究对于理解生态系统中的氮循环非常重要。
12.Farmers often add fertilizers that promote the growth of nitrobacteria (亚硝化细菌) to enhance soil fertility.
农民通常添加促进nitrobacteria(亚硝化细菌)生长的肥料,以增强土壤肥力。
13.Research shows that nitrobacteria (亚硝化细菌) can thrive in extreme conditions, making them resilient organisms.
研究表明,nitrobacteria(亚硝化细菌)能够在极端条件下生存,使它们成为具有韧性的生物。
作文
Nitrobacteria are a group of bacteria that play a crucial role in the nitrogen cycle, particularly in the process of nitrification. These microorganisms convert ammonia into nitrites and then into nitrates, which are essential nutrients for plants. Understanding the function of nitrobacteria (亚硝化细菌) is vital for both agriculture and environmental science. Without these bacteria, the nitrogen present in the atmosphere would remain largely unusable by living organisms, leading to nutrient deficiencies in soils and ecosystems.In agricultural practices, the presence of nitrobacteria (亚硝化细菌) in the soil can significantly enhance crop yields. Farmers often rely on fertilizers that contain nitrogen compounds, but the effectiveness of these fertilizers depends on the activity of nitrobacteria (亚硝化细菌). When ammonia from fertilizers is introduced into the soil, it is the nitrobacteria (亚硝化细菌) that oxidize this ammonia, transforming it into nitrites and subsequently into nitrates that plants can absorb. This biological process not only supports plant growth but also helps maintain soil health by preventing the accumulation of toxic ammonia levels.Moreover, nitrobacteria (亚硝化细菌) contribute to the overall balance of the ecosystem. They help regulate nitrogen levels in the environment, which is critical for maintaining biodiversity. In aquatic systems, for example, an excess of nitrogen can lead to algal blooms, which deplete oxygen in the water and harm fish and other aquatic life. The action of nitrobacteria (亚硝化细菌) helps mitigate these issues by converting excess ammonia into less harmful forms.Research into nitrobacteria (亚硝化细菌) has expanded our understanding of microbial ecology and the nitrogen cycle. Scientists are studying how different environmental factors, such as temperature, pH, and moisture levels, affect the activity of these bacteria. This research is essential for developing sustainable agricultural practices that minimize the use of chemical fertilizers while maximizing crop production.Additionally, the study of nitrobacteria (亚硝化细菌) is relevant in the context of climate change. Nitrogen compounds are significant greenhouse gases, and understanding how nitrobacteria (亚硝化细菌) interact with these compounds can help us devise strategies to reduce emissions. For instance, enhancing the natural populations of nitrobacteria (亚硝化细菌) in soils could lead to more efficient nitrogen cycling, thereby reducing the need for synthetic fertilizers that contribute to greenhouse gas emissions.In conclusion, nitrobacteria (亚硝化细菌) are indispensable players in the nitrogen cycle with far-reaching implications for agriculture, ecosystem health, and climate change mitigation. Their ability to transform ammonia into usable forms of nitrogen highlights their importance in promoting plant growth and maintaining soil fertility. As we continue to face global challenges related to food security and environmental sustainability, understanding and harnessing the power of nitrobacteria (亚硝化细菌) will be crucial for future agricultural innovations and ecological conservation efforts.
亚硝化细菌是一类在氮循环中发挥关键作用的细菌,特别是在硝化过程中。这些微生物将氨转化为亚硝酸盐,然后转化为硝酸盐,这些都是植物所需的重要养分。理解nitrobacteria(亚硝化细菌)的功能对于农业和环境科学至关重要。如果没有这些细菌,大气中的氮将大部分无法被生物体利用,从而导致土壤和生态系统中的营养缺乏。在农业实践中,土壤中存在的nitrobacteria(亚硝化细菌)可以显著提高作物产量。农民通常依赖含氮化合物的肥料,但这些肥料的有效性取决于nitrobacteria(亚硝化细菌)的活性。当氨从肥料中引入土壤时,正是nitrobacteria(亚硝化细菌)氧化这种氨,将其转化为亚硝酸盐,随后转化为植物可以吸收的硝酸盐。这一生物过程不仅支持植物生长,还通过防止有毒氨水平的积累来维护土壤健康。此外,nitrobacteria(亚硝化细菌)有助于生态系统的整体平衡。它们帮助调节环境中的氮水平,这对维持生物多样性至关重要。在水生系统中,例如,氮的过量会导致藻类大量繁殖,消耗水中的氧气,危害鱼类和其他水生生物。nitrobacteria(亚硝化细菌)的作用有助于减轻这些问题,通过将多余的氨转化为较不有害的形式。对nitrobacteria(亚硝化细菌)的研究扩展了我们对微生物生态学和氮循环的理解。科学家正在研究不同的环境因素,如温度、pH值和湿度水平,如何影响这些细菌的活性。这项研究对于开发可持续的农业实践至关重要,这些实践最小化化肥的使用,同时最大化作物生产。此外,研究nitrobacteria(亚硝化细菌)在气候变化背景下也具有相关性。氮化合物是重要的温室气体,了解nitrobacteria(亚硝化细菌)如何与这些化合物相互作用,可以帮助我们制定减少排放的策略。例如,增强土壤中nitrobacteria(亚硝化细菌)的自然种群可能导致更高效的氮循环,从而减少对合成肥料的需求,而后者又会导致温室气体排放。总之,nitrobacteria(亚硝化细菌)是氮循环中不可或缺的参与者,对农业、生态系统健康和气候变化缓解具有深远的影响。它们将氨转化为可用的氮形式的能力突显了它们在促进植物生长和维持土壤肥力方面的重要性。随着我们继续面临与粮食安全和环境可持续性相关的全球挑战,理解和利用nitrobacteria(亚硝化细菌)的力量对于未来的农业创新和生态保护工作至关重要。