abscissa

简明释义

[æbˈsɪsə][æbˈsɪsə]

n. [数][天] 横坐标;横线

复 数 a b s c i s s a e 或 a b s c i s s a s

英英释义

The horizontal coordinate in a Cartesian coordinate system, representing the distance from the vertical axis.

在笛卡尔坐标系中,表示距离垂直轴的水平坐标。

单词用法

calculate the abscissa

计算横坐标

plot the abscissa

绘制横坐标

abscissa and ordinate

横坐标和纵坐标

abscissa axis

横坐标轴

同义词

x-coordinate

x坐标

The x-coordinate of a point determines its position along the horizontal axis.

一个点的x坐标决定了它在水平轴上的位置。

horizontal coordinate

水平坐标

In a Cartesian plane, the horizontal coordinate is essential for graphing functions.

在笛卡尔平面中,水平坐标对于绘制函数是必不可少的。

反义词

ordinate

纵坐标

The ordinate of a point on the graph indicates its vertical position.

图上某点的纵坐标表示其垂直位置。

y-coordinate

y坐标

In a Cartesian coordinate system, the y-coordinate is always plotted second.

在笛卡尔坐标系中,y坐标总是第二个绘制。

例句

1.Drawing a tangent after inflection and intersected the abscissa the slope of the tangent was taken as the flexile modulus.

在不规则样条的负荷-挠度取拐点后直线段切线与横坐标的交点作零点修正后所测得的弯曲弹性模量比较接近真实值。

2.Methods The quantity effectiveness graph of health, disability, and death was illustrated according to age as abscissa and LE, DALE and disability adjusted life year(DALY) as coordinate.

方法以居民年龄别为横坐标,以年龄别期望寿命(LE)、健康期望寿命(DALE)、伤残调整寿命年(DALY)为纵坐标,分别绘制出健康、伤残、死亡三者关系的量效图谱。

3.Fig. 1 The staggered mesh of the shallow water equation . The abscissa is axis. The ordinate is the time.

图1蛙跳格式的浅水方程的网格形式,横坐标为轴,纵坐标为时间。

4.The experimental curve runs nearly parallel to the abscissa .

实验曲线几乎与横座标平行。

5.In the policy chart the abscissa denotes the average factors score of business completing ability it reflects level of business completing ability in a period;

它以反映企业竞争实力阶段性水平的企业竞争力平均因子得分为横坐标;

6.Therefore, on the complex plane, robust stability can be formulated by minimization of pseudospectra abscissa.

于是在复平面上,鲁棒稳定性问题就转化为伪谱横坐标(伪谱最右端的横坐标值)最小的优化问题。

7.The abscissa (横坐标) is crucial for determining the position of a point on a graph.

对于确定图上一个点的位置,abscissa (横坐标) 是至关重要的。

8.In statistics, the abscissa (横坐标) can represent independent variables in a scatter plot.

在统计学中,abscissa (横坐标) 可以表示散点图中的自变量。

9.To find the abscissa (横坐标) of the point (3, 5), you simply look at the first number.

要找到点(3, 5)的abscissa (横坐标),你只需看第一个数字。

10.In a Cartesian coordinate system, the horizontal line represents the abscissa (横坐标) of a point.

在笛卡尔坐标系中,水平线代表一个点的abscissa (横坐标)。

11.When graphing a function, the abscissa (横坐标) values are plotted along the x-axis.

在绘制函数时,abscissa (横坐标) 值沿着x轴绘制。

作文

In the world of mathematics, understanding the different components of a graph is crucial for interpreting data accurately. One of these fundamental components is the abscissa, which refers to the horizontal coordinate in a two-dimensional Cartesian coordinate system. The abscissa represents the distance along the x-axis from the origin point (0,0) to a specific point on the graph. This concept is not only essential for mathematicians but also for scientists, engineers, and anyone who relies on data visualization to make informed decisions.To illustrate the importance of the abscissa, let’s consider a practical example. Imagine you are conducting an experiment to measure the growth of a plant over time. You decide to record the height of the plant every week for a month. In this case, you can plot the height of the plant on the y-axis, while the time elapsed in weeks can be represented as the abscissa on the x-axis. By doing so, you create a visual representation of the plant's growth, which allows you to identify trends and patterns in the data.When we look at the graph, each point plotted corresponds to a specific week and the corresponding height of the plant. The abscissa values indicate the weeks, while the y-values represent the height of the plant. This clear distinction helps us analyze how the plant grows over time and whether any external factors, such as light or water, have had an impact on its growth rate.Moreover, the concept of the abscissa extends beyond simple graphs. It is also crucial in more complex mathematical functions and equations. For instance, in the equation of a line, which can be expressed in the slope-intercept form as y = mx + b, the term 'x' represents the abscissa. Here, the slope 'm' indicates how steep the line is, and 'b' represents the y-intercept. Understanding how the abscissa interacts with the slope and y-intercept is vital for graphing linear equations accurately.Furthermore, the abscissa plays a significant role in statistics, particularly in scatter plots. In a scatter plot, the abscissa typically represents one variable, while the y-axis represents another. By analyzing the relationship between these two variables, researchers can determine correlations and make predictions based on the data. For example, if a researcher is studying the relationship between study hours (on the abscissa) and exam scores (on the y-axis), they can visually assess how changes in study habits might affect academic performance.In conclusion, the abscissa is a crucial element in the realm of mathematics and data analysis. Whether you are plotting the growth of a plant, graphing a linear equation, or examining relationships between variables in statistics, understanding the abscissa allows for clearer interpretation and better decision-making based on data. As we continue to explore the vast field of mathematics, the significance of the abscissa will undoubtedly remain a fundamental concept that underpins our understanding of graphs and data representation.

在数学的世界中,理解图形的不同组成部分对于准确解释数据至关重要。其中一个基本组成部分是abscissa,它指的是二维笛卡尔坐标系中的水平坐标。abscissa表示从原点(0,0)到图上的特定点沿x轴的距离。这个概念不仅对数学家至关重要,而且对科学家、工程师以及任何依赖数据可视化做出明智决策的人来说都是如此。为了说明abscissa的重要性,让我们考虑一个实际的例子。想象一下,你正在进行一项实验,以测量植物随时间的生长情况。你决定每周记录一次植物的高度,持续一个月。在这种情况下,你可以在y轴上绘制植物的高度,而经过的时间(以周为单位)可以表示为x轴上的abscissa。通过这样做,你创建了一个植物生长的可视化表示,这使你能够识别数据中的趋势和模式。当我们查看图形时,每个绘制的点对应于特定的周数和相应的植物高度。abscissa值表示周数,而y值代表植物的高度。这种清晰的区分帮助我们分析植物随时间的生长情况,以及任何外部因素(如光照或水分)是否对其生长速率产生了影响。此外,abscissa的概念还扩展到了更复杂的数学函数和方程中。例如,在一条直线的方程中,可以用斜截式y = mx + b表示,其中'x'代表abscissa。在这里,斜率'm'表示直线的陡峭程度,而'b'表示y截距。理解abscissa如何与斜率和y截距相互作用,对于准确绘制线性方程至关重要。此外,abscissa在统计学中也扮演着重要角色,特别是在散点图中。在散点图中,abscissa通常表示一个变量,而y轴表示另一个变量。通过分析这两个变量之间的关系,研究人员可以确定相关性并根据数据做出预测。例如,如果研究人员正在研究学习时间(在abscissa上)与考试成绩(在y轴上)之间的关系,他们可以直观地评估学习习惯的变化可能如何影响学业表现。总之,abscissa是数学和数据分析领域的重要元素。无论你是在绘制植物的生长、绘制线性方程,还是检查统计中变量之间的关系,理解abscissa都可以让数据的解释更加清晰,并基于数据做出更好的决策。随着我们继续探索广阔的数学领域,abscissa的重要性无疑将仍然是支撑我们理解图形和数据表示的基本概念。