monomolecular
简明释义
英[ˌmɒnə(ʊ)məˈlekjʊlə]美[ˌmɑnoməˈlekjələr]
adj. 单分子的;单分子厚的
英英释义
与单个分子相关或由单个分子组成。 |
单词用法
单分子吸附 | |
单分子结构 | |
单分子反应 | |
单分子理论 |
同义词
单分子 | 这项研究集中在单分子相互作用上。 | ||
单体的 | The monomeric form of the protein is essential for its function. | 蛋白质的单体形式对其功能至关重要。 |
反义词
例句
1.LB films are organic super-monomolecular layers.
LB膜是单分子层的有机超薄膜。
2.Macromolecular colorants have advantage in high strength, resistance to solvents and processability compared with monomolecular colorants, thus can be widely used in many fields.
与小分子染料相比,高分子染料具有高强度、耐溶剂性和可加工性等优越性,在很多领域获得了广泛应用。
3.Macromolecular colorants have advantage in high strength, resistance to solvents and processability compared with monomolecular colorants, thus can be widely used in many fields.
与小分子染料相比,高分子染料具有高强度、耐溶剂性和可加工性等优越性,在很多领域获得了广泛应用。
4.The absorption is in monomolecular type and it is easy to be performed.
吸附形式呈单分子层且容易进行。
5.Presenting a short view of the progress in the research on the methods for characterization of self-assembly monomolecular films, from the point of view of ele…
着重从电化学、谱学、显微学等方面综述了近几年来自组装单分子膜的表征方法研究进展,并对其发展前景作了展望。
6.In drug delivery systems, monomolecular 单分子 carriers can improve the targeting of medications.
在药物递送系统中,单分子载体可以改善药物的靶向性。
7.Understanding monomolecular 单分子 interactions is crucial for developing new materials.
理解单分子相互作用对于开发新材料至关重要。
8.Researchers discovered that monomolecular 单分子 layers can enhance the efficiency of solar cells.
研究人员发现,单分子层可以提高太阳能电池的效率。
9.The application of monomolecular 单分子 technology is revolutionizing surface coatings.
单分子技术的应用正在革新表面涂层。
10.The study focused on the properties of monomolecular 单分子 films in nanotechnology.
这项研究集中于纳米技术中
作文
In the realm of chemistry, the concept of monomolecular plays a crucial role in understanding various processes at the molecular level. A monomolecular layer refers to a single layer of molecules that can form on a surface, and this phenomenon is significant in fields such as material science, biology, and nanotechnology. To grasp the importance of monomolecular structures, we must first explore their applications and implications in different scientific domains.One of the most prominent examples of monomolecular layers is found in the formation of surfactants. Surfactants are compounds that lower the surface tension between two liquids or between a liquid and a solid. When surfactants are added to water, they tend to arrange themselves into monomolecular layers at the air-water interface. This arrangement allows for better wetting properties and improved emulsification, which are essential in industries ranging from cosmetics to food production. By studying these monomolecular layers, scientists can optimize formulations to enhance product performance and stability.Moreover, the study of monomolecular films is pivotal in the development of biosensors. In biosensor technology, monomolecular layers can be employed to immobilize biomolecules, such as enzymes or antibodies, on a sensor's surface. This immobilization allows for specific interactions between the target analyte and the bound biomolecule, leading to a measurable signal. The efficiency and sensitivity of biosensors heavily depend on the characteristics of the monomolecular layer, making it an essential aspect of research and development in medical diagnostics and environmental monitoring.Additionally, in the field of nanotechnology, monomolecular structures are crucial for creating advanced materials with unique properties. For instance, researchers are exploring the use of monomolecular layers to fabricate nanoscale devices that could revolutionize electronics, energy storage, and drug delivery systems. By controlling the arrangement and composition of monomolecular layers, scientists can engineer materials with tailored functionalities, paving the way for innovative applications that were once thought to be impossible.Furthermore, the concept of monomolecular interactions extends beyond pure chemistry. In biological systems, the behavior of proteins and lipids often involves monomolecular arrangements. For example, cell membranes are primarily composed of lipid bilayers, but the dynamics of these membranes can be influenced by the presence of monomolecular lipid rafts. These rafts play a critical role in cellular signaling and membrane fluidity, highlighting the importance of understanding monomolecular structures in biological contexts.In conclusion, the term monomolecular encompasses a wide range of applications and implications across various scientific fields. From enhancing the properties of surfactants to advancing biosensor technology and enabling breakthroughs in nanotechnology, the study of monomolecular layers is integral to modern scientific research. As we continue to explore the intricacies of molecular interactions and structures, the significance of monomolecular phenomena will undoubtedly grow, leading to new discoveries and innovations that can benefit society in countless ways.
在化学领域,monomolecular的概念在理解各种分子级过程方面发挥着至关重要的作用。monomolecular层是指可以在表面上形成的单层分子,这种现象在材料科学、生物学和纳米技术等领域具有重要意义。要掌握monomolecular结构的重要性,我们必须首先探索其在不同科学领域中的应用和影响。一个最显著的monomolecular层的例子是在表面活性剂的形成中。表面活性剂是降低两种液体或液体与固体之间表面张力的化合物。当表面活性剂被添加到水中时,它们往往会在空气-水界面上排列成monomolecular层。这种排列允许更好的润湿性能和改善的乳化性,这在化妆品到食品生产等行业中都是必不可少的。通过研究这些monomolecular层,科学家可以优化配方,以增强产品性能和稳定性。此外,monomolecular薄膜的研究在生物传感器的开发中至关重要。在生物传感器技术中,monomolecular层可以用来将生物分子(如酶或抗体)固定在传感器的表面。这种固定允许目标分析物与结合的生物分子之间发生特定相互作用,从而产生可测量的信号。生物传感器的效率和灵敏度在很大程度上依赖于monomolecular层的特性,使其成为医学诊断和环境监测研究与开发中的一个重要方面。此外,在纳米技术领域,monomolecular结构对于制造具有独特性质的先进材料至关重要。例如,研究人员正在探索使用monomolecular层来制造可能革新电子产品、能源存储和药物递送系统的纳米级设备。通过控制monomolecular层的排列和组成,科学家可以设计具有定制功能的材料,为曾被认为不可能的创新应用铺平道路。此外,monomolecular相互作用的概念超越了纯化学。在生物系统中,蛋白质和脂质的行为通常涉及monomolecular排列。例如,细胞膜主要由脂质双层组成,但这些膜的动态可以受到monomolecular脂质筏存在的影响。这些筏在细胞信号传导和膜流动性中发挥着关键作用,突显了在生物背景下理解monomolecular结构的重要性。总之,monomolecular一词涵盖了各个科学领域广泛的应用和影响。从增强表面活性剂的性能到推进生物传感器技术,再到推动纳米技术的突破,对monomolecular层的研究是现代科学研究不可或缺的一部分。随着我们继续探索分子相互作用和结构的复杂性,monomolecular现象的重要性无疑会增长,导致新的发现和创新,能够以无数种方式造福社会。