lignocellulose

简明释义

[ˌlɪɡnəʊˈseljʊˌləʊs][ˌlɪɡnoʊˈseljəˌloʊs]

n. [植] 木质纤维素

英英释义

Lignocellulose is a complex structural material that makes up the cell walls of plants, consisting mainly of cellulose, hemicellulose, and lignin.

木质纤维素是一种复杂的结构材料,构成植物细胞壁,主要由纤维素、半纤维素和木质素组成。

单词用法

lignocellulose biomass

木质纤维素生物质

lignocellulose degradation

木质纤维素降解

lignocellulose conversion

木质纤维素转化

lignocellulose feedstock

木质纤维素原料

lignocellulose-based materials

基于木质纤维素的材料

lignocellulose processing

木质纤维素加工

同义词

cellulosic biomass

纤维素生物质

Lignocellulosic biomass is a renewable resource for biofuel production.

木质纤维素生物质是生物燃料生产的可再生资源。

反义词

sugar

Sugar is a quick source of energy for the body.

糖是身体快速的能量来源。

starch

淀粉

Starch is commonly found in foods like potatoes and rice.

淀粉通常存在于土豆和米饭等食物中。

例句

1.In the whole process of cultivation, 79.86% car-bon source for the growth and development of the fungus originated from lignocellulose.

且就整个栽培过程而言,姬松茸生长发育所需要的79.86%的碳源来自木质纤维素。

2.Study on the specific adsorption of catechin gallates by cedar lignocellulose.

杉树木质纤维素对酯型儿茶素类选择性吸附的研究。

3.The essential technique in the ethanol fermentation from dilute-acid lignocellulose hydrolysates is to obtain the strains of tolerant ethanol and inhibitors.

在对木质纤维素稀酸水解液进行乙醇发酵中,耐发酵抑制剂和耐高浓度乙醇的菌种非常重要。

4.The following hydrolysis reaction can be carried out under the homogeneous phase condition for the dissolving of the lignocellulose biomass.

溶解生物质以形成均相“生物质溶液”对于水解和预处理是非常重要的。

5.Efficient use of xylose is the basis for using lignocellulose completely.

木糖的有效利用是木质纤维素全利用的基础。

6.Presently, the pretreatment methods of lignocellulose covered physical method, chemical method, physical & chemical method, and biological method.

目前,对木质纤维素原料的预处理方法主要有物理法、化学法、物理化学法、生物法。

7.The batch-fermentation and fed-batch fermentation of dilute-acid lignocellulose hydrolysates to ethanol using different mixed immobilized cells have been studied.

在对木质纤维素稀酸水解液进行乙醇发酵中,耐发酵抑制剂和耐高浓度乙醇的菌种非常重要。

8.Wood-plastics composites are a kind of new material, which are formed by wood, wood fiber or other lignocellulose fibers with various plastics in different combining paths.

木塑复合材料是以木材或各种木质纤维素纤维材料为基本体,通过与塑料以不同复合途径形成的一种新型材料。

9.Utilizing lignocellulose 木质纤维素 for sustainable packaging materials is an emerging trend.

利用木质纤维素 木质纤维素 制作可持续包装材料是一种新兴趋势。

10.The biomass industry is focusing on converting lignocellulose 木质纤维素 into biofuels.

生物质产业专注于将木质纤维素 木质纤维素 转换为生物燃料。

11.The composition of lignocellulose 木质纤维素 varies significantly between different plant species.

不同植物种类之间的木质纤维素 木质纤维素 成分差异显著。

12.Researchers are studying the enzymatic breakdown of lignocellulose 木质纤维素 to improve bioethanol production.

研究人员正在研究对木质纤维素 木质纤维素 的酶解,以提高生物乙醇的生产。

13.The degradation of lignocellulose 木质纤维素 plays a crucial role in soil health.

木质纤维素 木质纤维素 的降解在土壤健康中起着至关重要的作用。

作文

Lignocellulose is a complex organic material that forms the structural framework of plants. It consists primarily of three components: cellulose, hemicellulose, and lignin. Understanding the composition and properties of lignocellulose is essential for various applications, particularly in the fields of bioenergy, materials science, and environmental sustainability. Cellulose, the most abundant organic polymer on Earth, is a polysaccharide made up of glucose units linked together. It provides strength and rigidity to plant cell walls and is a key component of lignocellulose. Hemicellulose, on the other hand, is a heterogeneous group of polysaccharides that surround cellulose fibers, playing a crucial role in the structural integrity of plant cells. Finally, lignin is a complex aromatic polymer that adds stiffness and resistance to degradation, making it vital for the durability of plant tissues. Together, these components create a robust structure that enables plants to thrive in diverse environments.The significance of lignocellulose extends beyond its role in plant biology. In recent years, there has been a growing interest in utilizing this abundant biomass for sustainable energy production. The conversion of lignocellulose into biofuels, such as ethanol and biogas, offers a renewable alternative to fossil fuels. This process involves breaking down the complex structure of lignocellulose through chemical, physical, or biological means to release fermentable sugars. However, the recalcitrance of lignocellulose poses significant challenges, as its dense structure makes it difficult to access and convert into usable energy sources.Moreover, the valorization of lignocellulose can lead to the development of innovative materials. For instance, researchers are exploring the potential of using lignocellulose to produce biodegradable plastics, composites, and other environmentally friendly materials. These advancements align with the global push towards reducing plastic waste and promoting a circular economy. By harnessing the properties of lignocellulose, we can create sustainable alternatives that minimize our dependence on petroleum-based products.In addition to energy and materials, lignocellulose also plays a vital role in soil health and carbon sequestration. As plant residues decompose, they contribute organic matter to the soil, enhancing its fertility and structure. Furthermore, the incorporation of lignocellulose into soil can improve its ability to retain moisture, thereby supporting agricultural productivity in arid regions. Additionally, the carbon stored in lignocellulose contributes to climate change mitigation efforts by sequestering carbon dioxide from the atmosphere.In conclusion, lignocellulose is a fundamental component of plant life with far-reaching implications for our environment and economy. Its unique structure and properties make it a valuable resource for renewable energy, sustainable materials, and soil health. As research continues to uncover the potential of lignocellulose, it is imperative that we prioritize its utilization in a manner that promotes ecological balance and enhances our quality of life. Through innovation and responsible management, lignocellulose could play a pivotal role in creating a more sustainable future for generations to come.

木质纤维素是一种复杂的有机材料,形成植物的结构框架。它主要由三种成分组成:纤维素、半纤维素和木质素。理解木质纤维素的组成和性质对于各种应用至关重要,特别是在生物能源、材料科学和环境可持续性领域。纤维素是地球上最丰富的有机聚合物,是由葡萄糖单元连接在一起构成的多糖。它为植物细胞壁提供强度和刚性,是木质纤维素的关键成分。另一方面,半纤维素是一组异质多糖,围绕纤维素纤维,发挥着植物细胞结构完整性的重要作用。最后,木质素是一种复杂的芳香族聚合物,为植物组织的耐久性增加了刚度和抗降解性。这些成分共同创造出一种坚固的结构,使植物能够在多样的环境中茁壮成长。木质纤维素的重要性不仅体现在植物生物学中。近年来,利用这种丰富的生物质进行可持续能源生产的兴趣日益增长。将木质纤维素转化为生物燃料,如乙醇和沼气,提供了一种可再生的替代化石燃料的方法。这一过程涉及通过化学、物理或生物手段分解木质纤维素的复杂结构,以释放可发酵的糖。然而,木质纤维素的顽固性带来了重大挑战,因为其致密结构使得获取和转化为可用能源源变得困难。此外,木质纤维素的增值也可能导致创新材料的发展。例如,研究人员正在探索使用木质纤维素生产生物降解塑料、复合材料和其他环保材料的潜力。这些进展与全球减少塑料废物和促进循环经济的努力相一致。通过利用木质纤维素的特性,我们可以创造可持续的替代品,减少对石油基产品的依赖。除了能源和材料,木质纤维素在土壤健康和碳封存中也发挥着重要作用。当植物残留物分解时,它们为土壤贡献有机物质,增强其肥力和结构。此外,将木质纤维素纳入土壤可以提高其保持水分的能力,从而支持干旱地区的农业生产力。此外,储存在木质纤维素中的碳通过从大气中封存二氧化碳,有助于应对气候变化。总之,木质纤维素是植物生命的基本组成部分,对我们的环境和经济具有深远的影响。其独特的结构和特性使其成为可再生能源、可持续材料和土壤健康的宝贵资源。随着研究不断揭示木质纤维素的潜力,我们必须优先考虑以促进生态平衡和提升生活质量的方式利用它。通过创新和负责任的管理,木质纤维素可以在为未来几代人创造更可持续的未来中发挥关键作用。