general longitudinal demagnetization
简明释义
纵向消磁
英英释义
例句
1.The findings revealed that general longitudinal demagnetization 一般纵向去磁 can significantly enhance the performance of magnetic sensors.
研究结果显示,一般纵向去磁可以显著提高磁传感器的性能。
2.Manufacturers are now considering general longitudinal demagnetization 一般纵向去磁 as a standard procedure in the production of electrical motors.
制造商现在将一般纵向去磁视为电动机生产中的标准程序。
3.The research team conducted a study on the effects of general longitudinal demagnetization 一般纵向去磁 in high-performance magnets.
研究小组对高性能磁体中一般纵向去磁的影响进行了研究。
4.In order to improve the stability of the magnetic field, they implemented general longitudinal demagnetization 一般纵向去磁 techniques.
为了提高磁场的稳定性,他们实施了一般纵向去磁技术。
5.The application of general longitudinal demagnetization 一般纵向去磁 has been shown to reduce noise in electronic devices.
应用一般纵向去磁已被证明可以减少电子设备中的噪音。
作文
In the field of materials science, understanding the properties of magnetic materials is crucial for various applications, ranging from electronics to data storage. One important concept in this realm is general longitudinal demagnetization, which refers to the process of reducing or eliminating the magnetization of a material along its length or longitudinal axis. This phenomenon is particularly significant in the study of ferromagnetic materials, where the alignment of magnetic domains can greatly influence the overall magnetic behavior of the material.When a ferromagnetic material is exposed to an external magnetic field, the magnetic domains within the material tend to align with the field, resulting in a net magnetization. However, when the external field is removed or altered, these domains can return to a disordered state, leading to a reduction in magnetization. The process of general longitudinal demagnetization specifically focuses on how this reduction occurs along the length of the material, which can be influenced by various factors such as temperature, material composition, and the history of magnetic exposure.One of the key mechanisms behind general longitudinal demagnetization is thermal agitation. As the temperature increases, the kinetic energy of the atoms in the material also increases, causing the magnetic domains to become more agitated and less aligned. This thermal agitation can lead to a significant decrease in magnetization, making it an essential consideration in applications that involve high temperatures, such as in electric motors or transformers.Another factor that contributes to general longitudinal demagnetization is the presence of impurities or defects within the material. These imperfections can disrupt the alignment of magnetic domains, making it easier for them to revert to a disordered state when an external magnetic field is removed. Understanding how these impurities affect the demagnetization process is vital for engineers and scientists who aim to develop materials with specific magnetic properties.The applications of general longitudinal demagnetization are vast. In the realm of data storage, for example, hard drives rely on the ability to magnetize and demagnetize regions of a disk to store information. By mastering the principles of general longitudinal demagnetization, engineers can create more efficient storage devices that can retain data more reliably over time.Moreover, in the design of electric motors, the efficiency of the motor can be affected by how well the materials used can withstand demagnetization. By selecting materials that have favorable properties concerning general longitudinal demagnetization, manufacturers can enhance the performance and longevity of their products.In conclusion, the concept of general longitudinal demagnetization plays a pivotal role in the understanding of magnetic materials. By exploring the factors that influence this process, researchers can develop better materials for a wide range of applications, ultimately leading to advancements in technology and engineering. As we continue to delve deeper into the intricacies of magnetism, the significance of general longitudinal demagnetization will only grow, paving the way for innovative solutions in the future.
在材料科学领域,理解磁性材料的性质对各种应用至关重要,从电子产品到数据存储。其中一个重要概念是一般纵向去磁化,它指的是沿着材料的长度或纵向轴减少或消除材料的磁化的过程。这种现象在研究铁磁材料时尤为显著,因为磁畴的排列会极大地影响材料的整体磁性行为。当铁磁材料暴露于外部磁场时,材料内部的磁畴往往会与磁场对齐,从而导致净磁化。然而,当外部磁场被移除或改变时,这些磁畴可能会返回到无序状态,从而导致磁化的减少。一般纵向去磁化的过程特别关注这种减少是如何沿着材料的长度发生的,这可以受到温度、材料成分和磁场历史等多种因素的影响。一般纵向去磁化背后的一个关键机制是热激发。随着温度的升高,材料中原子的动能也增加,导致磁畴变得更加激动且不那么对齐。这种热激发可能导致磁化显著降低,因此在涉及高温的应用中(如电动机或变压器)是一个必不可少的考虑因素。另一个影响一般纵向去磁化的因素是材料内部杂质或缺陷的存在。这些缺陷可能会干扰磁畴的排列,使其在移除外部磁场时更容易恢复到无序状态。理解这些杂质如何影响去磁化过程对于希望开发具有特定磁性材料的工程师和科学家至关重要。一般纵向去磁化的应用广泛。例如,在数据存储领域,硬盘依赖于能够磁化和去磁化磁盘区域来存储信息。通过掌握一般纵向去磁化的原理,工程师们可以创建更高效的存储设备,使数据能够更可靠地保留。此外,在电动机的设计中,所用材料抵抗去磁化的能力会影响电动机的效率。通过选择在一般纵向去磁化方面具有良好特性的材料,制造商可以提高其产品的性能和使用寿命。总之,一般纵向去磁化的概念在理解磁性材料中扮演着关键角色。通过探索影响这一过程的因素,研究人员可以开发出更好的材料以满足各种应用,最终推动技术和工程的进步。随着我们继续深入探讨磁性现象的复杂性,一般纵向去磁化的重要性只会增加,为未来的创新解决方案铺平道路。
相关单词