autotrophic
简明释义
英[ˌɔːtəˈtrɒfɪk]美[ˌɔːtəˈtrɑːfɪk]
adj. 无机营养的;自制养料的
英英释义
Relating to organisms that can produce their own food from inorganic substances, typically through photosynthesis or chemosynthesis. | 与能够通过无机物质自制食物的生物相关,通常通过光合作用或化学合成进行。 |
单词用法
自养细菌 | |
自养植物 | |
自养营养方式 | |
自养和异养 | |
自养生长 | |
自养代谢 | |
自养生态系统 | |
自养途径 |
同义词
自给自足的 | Autotrophic organisms are self-sustaining and can produce their own food. | 自养生物是自给自足的,能够自行生产食物。 | |
生产者 | Plants are considered producers because they are autotrophic. | 植物被视为生产者,因为它们是自养的。 | |
光合的 | 光合细菌是一种自养生物。 |
反义词
异养的 | Humans are heterotrophic organisms that rely on consuming other organisms for energy. | 人类是异养生物,依赖于消耗其他生物来获取能量。 |
例句
1.Generally, there are large amounts of heterotrophic bacteria and small amounts of autotrophic bacteria in the water body.
总体来说,水体中异养微生物数量大,而自养微生物数量小。
2.The female gametophyte is reduced but larger than in angiosperms; it is not autotrophic.
裸子植物的雌配子体简化,但较被子植物体的体积大,不能自养。
3.Official Name: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen bacteria.
项目名称:利用兼性自养氢细菌将二氧化碳转化为生物燃料。
4.The autotrophic ammonium removal process was realized in floating bed reactors with sludge liquor as substrate.
以含有高浓度氨氮的消化污泥脱泥污水为基质 ,在悬浮填料床反应器中实现了稳定的全程自养脱氮过程 。
5.A new process of the bio-electrode rotating contactor (BERC) for denitrification was developed, and study was made for autotrophic denitrification by using hydrogen as electron donor.
采用旋转电极型生物反应器(B ERC)脱氮,对以氢气作为电子供体的自养反硝化进行了研究。
6.Heterotrophic bacteria eat most of the carbon-based materials in raw sewage while autotrophic bacteria consume ammonia and nitrogen compounds.
异养细菌可以吃掉未处理污水当中的大部分碳基物质;而自养细菌则会消耗掉氨氮化合物。
7.The research results of this topic could provide reference and theoretical basis for autotrophic nitrogen removal process applied to practical engineering.
本文的研究结果以期为自养脱氮工艺应用于实际工程提供参考和理论依据。
8.A new process of the bio-electrode rotating contactor (BERC) for denitrification was developed, and study was made for autotrophic denitrification by using hydrogen as electron donor.
采用旋转电极型生物反应器(B ERC)脱氮,对以氢气作为电子供体的自养反硝化进行了研究。
9.The growth and utilization of nitrogen, phosphorus of Chlorella ellipsoidea L1 strain were studied under autotrophic and heterotrophic conditions.
研究了自养与异养条件下小球藻对富营养化水体中氮、磷的利用及藻体的生长。
10.Certain bacteria are autotrophic 自养的, using inorganic substances to create energy.
某些细菌是自养的,利用无机物质来创造能量。
11.In ecosystems, autotrophic 自养的 organisms form the base of the food chain.
在生态系统中,自养的生物构成了食物链的基础。
12.Some autotrophic 自养的 plants can survive in extreme environments, like deserts.
一些自养的植物能够在极端环境中生存,比如沙漠。
13.Plants are classified as autotrophic 自养的 organisms because they can produce their own food through photosynthesis.
植物被分类为自养的生物,因为它们可以通过光合作用产生自己的食物。
14.The study of autotrophic 自养的 organisms helps scientists understand energy flow in nature.
对自养的生物的研究帮助科学家理解自然界中的能量流动。
作文
In the vast tapestry of life on Earth, organisms can be broadly categorized based on their nutritional strategies. One of the most fascinating groups is that of the autotrophic organisms. These are the life forms that have the remarkable ability to produce their own food using inorganic substances. This process is primarily achieved through photosynthesis or chemosynthesis, allowing them to convert sunlight or chemical energy into organic compounds. The significance of autotrophic organisms cannot be overstated, as they form the foundation of the food chain and play a crucial role in maintaining ecological balance.Photosynthetic autotrophic organisms, such as plants, algae, and certain bacteria, utilize sunlight as their energy source. Through the process of photosynthesis, they capture light energy and convert carbon dioxide and water into glucose and oxygen. This not only sustains the plants themselves but also provides oxygen and organic material for other living beings. In essence, these autotrophic organisms serve as primary producers, supporting a diverse range of herbivores and, subsequently, carnivores within various ecosystems.On the other hand, some autotrophic organisms rely on chemosynthesis, a process that harnesses energy from chemical reactions, often involving sulfur or nitrogen compounds. These organisms, typically found in extreme environments such as deep-sea hydrothermal vents, thrive in conditions where sunlight is absent. They play a vital role in their ecosystems by converting inorganic materials into energy-rich compounds, thereby supporting unique communities of life that depend on these autotrophic processes.The study of autotrophic organisms extends beyond their ecological roles; it also has significant implications for agriculture and biotechnology. Understanding how these organisms efficiently convert sunlight into energy can inspire sustainable agricultural practices and renewable energy technologies. For instance, researchers are exploring ways to enhance photosynthetic efficiency in crops, potentially leading to higher yields and reduced reliance on chemical fertilizers.Moreover, the concept of autotrophic organisms highlights the interconnectedness of life on our planet. The health of ecosystems relies heavily on the presence of these primary producers. When autotrophic populations decline due to environmental changes, such as climate change or pollution, the entire food web is jeopardized. This underscores the importance of conserving habitats that support autotrophic life forms, ensuring that they continue to thrive and fulfill their essential roles.In conclusion, autotrophic organisms are integral to the Earth's ecosystems, serving as the primary producers that sustain life. Their unique ability to convert inorganic materials into energy-rich compounds through photosynthesis or chemosynthesis is fundamental to the survival of countless species. As we face global challenges such as climate change and biodiversity loss, understanding and protecting these autotrophic life forms will be crucial for maintaining ecological balance and promoting a sustainable future.
在地球生命的广阔画卷中,生物可以根据其营养策略大致分类。其中一个最引人入胜的群体是自养型生物。这些生物具有利用无机物质自行生产食物的非凡能力。这一过程主要通过光合作用或化学合成实现,使它们能够将阳光或化学能转化为有机化合物。自养型生物的重要性不容小觑,因为它们构成了食物链的基础,并在维持生态平衡方面发挥着至关重要的作用。光合自养型生物,如植物、藻类和某些细菌,利用阳光作为其能量来源。通过光合作用,它们捕获光能,将二氧化碳和水转化为葡萄糖和氧气。这不仅维持了植物自身的生存,还为其他生物提供了氧气和有机物质。从本质上讲,这些自养型生物充当了初级生产者,支持着各种草食动物以及随后出现的肉食动物。另一方面,一些自养型生物依赖化学合成,这是一种利用化学反应中的能量的过程,通常涉及硫或氮化合物。这些生物通常在深海热液喷口等极端环境中生存,在阳光缺乏的条件下繁衍生息。它们通过将无机材料转化为富含能量的化合物,在其生态系统中发挥着至关重要的作用,从而支持依赖这些自养型过程的独特生命群落。对自养型生物的研究不仅超越了它们的生态角色;它还有重要的农业和生物技术意义。理解这些生物如何高效地将阳光转化为能量,可以激励可持续农业实践和可再生能源技术的发展。例如,研究人员正在探索增强作物光合作用效率的方法,这可能导致更高的产量并减少对化肥的依赖。此外,自养型生物的概念突显了我们星球上生命的相互联系。生态系统的健康在很大程度上依赖于这些初级生产者的存在。当自养型种群因环境变化(如气候变化或污染)而下降时,整个食物链都会受到威胁。这强调了保护支持自养型生命形式的栖息地的重要性,以确保它们继续繁荣并履行其基本角色。总之,自养型生物对于地球生态系统至关重要,充当维持生命的初级生产者。它们通过光合作用或化学合成将无机材料转化为富含能量的化合物的独特能力是无数物种生存的基础。在面对气候变化和生物多样性丧失等全球挑战时,理解和保护这些自养型生命形式将对维持生态平衡和促进可持续未来至关重要。