cosine
简明释义
n. [数] 余弦
英英释义
单词用法
离散余弦变换 | |
方向余弦 |
同义词
反义词
正弦 | The sine of an angle is the ratio of the length of the opposite side to the hypotenuse. | 一个角的正弦是对边长度与斜边长度的比值。 | |
正切 | The tangent function can be defined as the ratio of sine to cosine. | 正切函数可以定义为正弦与余弦的比值。 |
例句
1.A So I get zero equals A times the cosine of phi.
我得到0等于,乘以cosφ
2.Returns the hyperbolic cosine of a number! Is any real number !
计算数值的双曲余弦值。!任意实数。!
3.Since there is no acceleration in the y direction, the normal force must be also mg cosine theta.
既然在y方向上,没有加速度,法向力也等于mgcosθ
4.Then this is the component in your direction we call that the radial component which is v cosine theta.
这是y方向的,组成因素,我们称之为辐射组成,等于vcosθ
5.Is a mathematical function that returns the trigonometric cosine of the specified Angle, in radians, in the specified expression.
一个数学函数,返回指定表达式中以弧度表示的指定角的三角余弦。
6.Here is a simple annotated multiplot that plots the sine, cosine, and their respective reciprocals.
下面是简单说明的multiplot,它绘制正弦、余弦及其各自倒数的曲线图。
7.Above, we plotted both the sine and cosine on the same graph.
上面,我们在同一图中绘制了正弦和余弦曲线。
8.But, we have the constraint, a equals b cosine theta.
但是我们有约束条件,a=b*cosθ
9.This is a constant, and so you're going max to get theta equals theta maximum times the cosine omega t plus phi.
这是不变的,所以得到θ=θ,乘以cosωt+π
10.In trigonometry, the value of the cosine of an angle is defined as the ratio of the length of the adjacent side to the hypotenuse in a right triangle.
在三角学中,一个角的余弦值被定义为直角三角形中邻边与斜边的长度比。
11.To find the cosine of 60 degrees, you can use a calculator or refer to a trigonometric table.
要找到60度的余弦值,你可以使用计算器或查阅三角函数表。
12.In physics, the cosine function is often used to resolve vector components.
在物理学中,余弦函数常用于分解向量分量。
13.The cosine function is periodic, with a period of 2π radians.
余弦函数是周期性的,周期为2π弧度。
14.The formula for the cosine law helps in calculating the lengths of sides in any triangle.
用于计算任意三角形边长的公式是余弦定律。
作文
In the realm of mathematics, particularly in trigonometry, the concept of cosine (余弦) plays a crucial role. Understanding cosine is essential for students and professionals alike, as it serves as a fundamental building block for various applications in science, engineering, and technology. The cosine function relates the angle of a right triangle to the lengths of its adjacent side and hypotenuse. Specifically, if we have a right triangle where one angle is θ, then the cosine of that angle is defined as the ratio of the length of the adjacent side to the length of the hypotenuse. This relationship can be expressed mathematically as: cos(θ) = adjacent/hypotenuse.The importance of cosine extends beyond simple geometric interpretations. It is also vital in the study of periodic functions. The cosine function is one of the two fundamental trigonometric functions alongside sine. Together, they form the basis for understanding wave patterns, oscillations, and circular motion. For instance, in physics, when analyzing waveforms, the cosine function helps describe the behavior of waves, such as sound waves or electromagnetic waves. The periodic nature of the cosine function allows it to model real-world phenomena effectively, making it indispensable in fields ranging from acoustics to optics.Moreover, the cosine function also finds applications in computer graphics. In rendering 2D and 3D images, the cosine function is used to calculate angles and distances between points in space. By applying cosine calculations, graphic designers can create realistic shadows, reflections, and textures, enhancing the visual appeal of digital content. Additionally, the cosine similarity metric is widely utilized in data analysis and machine learning. It measures the cosine of the angle between two non-zero vectors in an inner product space, providing a way to determine how similar two data sets are, regardless of their magnitude.Furthermore, the cosine rule, which extends the concept of cosine to non-right triangles, is another significant application. The rule states that in any triangle, the square of one side is equal to the sum of the squares of the other two sides minus twice the product of those sides multiplied by the cosine of the included angle. This theorem is critical for solving triangles when only limited information is available, allowing mathematicians and engineers to find unknown lengths and angles.In conclusion, the significance of cosine (余弦) in mathematics cannot be overstated. Its applications span various fields, including physics, engineering, computer science, and data analysis. Mastering the cosine function and its related concepts is essential for anyone looking to excel in these disciplines. As we continue to explore the vast world of mathematics, the cosine function remains a vital tool that unlocks the mysteries of angles, waves, and spatial relationships, proving that even the simplest mathematical concepts can have profound implications in our understanding of the universe.
在数学领域,特别是在三角学中,cosine(余弦)的概念起着至关重要的作用。理解cosine对学生和专业人士来说都是必不可少的,因为它作为各种科学、工程和技术应用的基础构件。cosine函数将直角三角形的角度与其邻边和斜边的长度联系起来。具体来说,如果我们有一个直角三角形,其中一个角为θ,则该角的cosine定义为邻边长度与斜边长度的比率。这个关系可以用数学表达式表示为:cos(θ) = adjacent/hypotenuse。cosine的重要性超越了简单的几何解释。它在周期函数的研究中也至关重要。cosine函数是两个基本三角函数之一,另一个是正弦。它们共同构成了理解波动模式、振荡和圆周运动的基础。例如,在物理学中,当分析波形时,cosine函数帮助描述波的行为,例如声波或电磁波。cosine函数的周期性使其能够有效地模拟现实世界现象,使其在从声学到光学的各个领域都不可或缺。此外,cosine函数还在计算机图形学中找到了应用。在渲染二维和三维图像时,cosine函数用于计算空间中点之间的角度和距离。通过应用cosine计算,图形设计师可以创建逼真的阴影、反射和纹理,增强数字内容的视觉吸引力。此外,cosine相似度度量在数据分析和机器学习中被广泛使用。它测量两个非零向量在内积空间中的夹角的余弦,提供了一种确定两个数据集之间相似性的方式,而不考虑它们的大小。此外,扩展cosine概念到非直角三角形的cosine法则也是另一个重要的应用。该法则指出,在任何三角形中,一条边的平方等于其他两条边的平方之和减去这两条边的乘积的两倍乘以夹角的cosine。这一定理对于解决仅有有限信息的三角形至关重要,使数学家和工程师能够找到未知的长度和角度。总之,cosine(余弦)在数学中的重要性无可低估。它的应用涵盖了多个领域,包括物理学、工程学、计算机科学和数据分析。掌握cosine函数及其相关概念对于任何希望在这些学科中脱颖而出的人来说都是至关重要的。当我们继续探索广阔的数学世界时,cosine函数仍然是一个重要的工具,揭示了角度、波动和空间关系的奥秘,证明了即使是最简单的数学概念也可以对我们理解宇宙产生深远的影响。