fluid dynamics

简明释义

流体动力学

英英释义

Fluid dynamics is the branch of physics concerned with the study of the behavior of fluids (liquids and gases) in motion, including the forces acting on them and the effects of viscosity and turbulence.

流体动力学是物理学的一个分支,研究流体(液体和气体)运动行为,包括作用在它们上的力以及粘度和湍流的影响。

例句

1.The fluid dynamics 流体动力学 of blood flow is crucial for understanding cardiovascular health.

血流的流体动力学 fluid dynamics对于理解心血管健康至关重要。

2.Researchers use simulations to analyze fluid dynamics 流体动力学 in ocean currents.

研究人员使用模拟分析海洋洋流中的流体动力学 fluid dynamics

3.In meteorology, fluid dynamics 流体动力学 helps predict weather patterns.

在气象学中,流体动力学 fluid dynamics有助于预测天气模式。

4.Engineers study fluid dynamics 流体动力学 to improve the design of airplane wings.

工程师研究流体动力学 fluid dynamics以改进飞机机翼的设计。

5.The study of fluid dynamics 流体动力学 is essential for designing efficient pumps.

研究流体动力学 fluid dynamics对于设计高效泵是必不可少的。

作文

Fluid dynamics is a fascinating field of study that explores the behavior of fluids, both liquids and gases, in motion. It has numerous applications across various disciplines, including engineering, meteorology, oceanography, and even medicine. Understanding fluid dynamics (流体动力学) is crucial for designing efficient transportation systems, predicting weather patterns, and analyzing biological processes within the human body.At its core, fluid dynamics (流体动力学) examines how fluids interact with their surroundings and how they respond to forces. The fundamental principles governing this field are based on the laws of physics, particularly Newton's laws of motion and the conservation of mass, momentum, and energy. These principles enable scientists and engineers to develop mathematical models that can predict fluid behavior under various conditions.One of the most significant equations in fluid dynamics (流体动力学) is the Navier-Stokes equation, which describes how the velocity field of a fluid evolves over time. This equation is essential for understanding complex fluid flows, such as those found in turbulent environments like the atmosphere or oceans. Solving the Navier-Stokes equation can be incredibly challenging, especially in three-dimensional spaces where turbulence occurs. Researchers continue to work on finding solutions and approximations to better understand these complex phenomena.In engineering, the principles of fluid dynamics (流体动力学) play a vital role in the design of vehicles, aircraft, and ships. Engineers use computational fluid dynamics (CFD) simulations to optimize shapes and configurations, ensuring that these vehicles can move efficiently through air or water. For example, the design of an airplane wing heavily relies on fluid dynamics (流体动力学) to minimize drag and maximize lift, allowing the aircraft to fly safely and efficiently.Meteorologists also depend on fluid dynamics (流体动力学) to model and predict weather patterns. The atmosphere behaves like a fluid, and understanding its dynamics is essential for forecasting storms, temperature changes, and other climatic events. Numerical weather prediction models utilize the principles of fluid dynamics (流体动力学) to simulate atmospheric conditions, providing valuable information that helps communities prepare for severe weather.In the field of medicine, fluid dynamics (流体动力学) is crucial for understanding blood flow within the human circulatory system. Researchers study how blood behaves as it moves through arteries and veins, which can lead to insights into cardiovascular health. By applying the principles of fluid dynamics (流体动力学), medical professionals can develop better diagnostic tools and treatment strategies for conditions like hypertension and atherosclerosis.In conclusion, fluid dynamics (流体动力学) is an essential area of study that impacts various fields, from engineering to meteorology and medicine. Its principles help us understand the complex behavior of fluids, enabling innovations that improve our daily lives. As technology advances, the importance of fluid dynamics (流体动力学) will only continue to grow, making it a vital area for future research and application.

流体动力学是一个迷人的研究领域,探索液体和气体在运动中的行为。它在工程、气象、海洋学甚至医学等多个学科中有着广泛的应用。理解流体动力学fluid dynamics)对于设计高效的运输系统、预测天气模式以及分析人体内的生物过程至关重要。在其核心,流体动力学fluid dynamics)研究流体如何与其周围环境相互作用以及它们如何对力作出反应。支配这一领域的基本原则基于物理学定律,特别是牛顿运动定律以及质量、动量和能量守恒法则。这些原则使科学家和工程师能够开发数学模型,以预测流体在各种条件下的行为。在流体动力学fluid dynamics)中,最重要的方程之一是纳维-斯托克斯方程,它描述了流体速度场随时间的演变。这个方程对于理解复杂流动现象至关重要,比如在大气或海洋等湍流环境中发现的流动。求解纳维-斯托克斯方程可能非常具有挑战性,尤其是在发生湍流的三维空间中。研究人员持续努力寻找解决方案和近似方法,以更好地理解这些复杂现象。在工程领域,流体动力学fluid dynamics)原理在车辆、飞机和船只的设计中发挥着至关重要的作用。工程师使用计算流体动力学(CFD)模拟来优化形状和配置,确保这些车辆能够高效地穿过空气或水。例如,飞机机翼的设计在很大程度上依赖于流体动力学fluid dynamics),以最小化阻力并最大化升力,从而允许飞机安全高效地飞行。气象学家也依赖于流体动力学fluid dynamics)来建模和预测天气模式。大气表现得像一种流体,理解其动态对于预测风暴、温度变化和其他气候事件至关重要。数值天气预报模型利用流体动力学fluid dynamics)原理来模拟大气条件,提供有价值的信息,帮助社区为严重天气做好准备。在医学领域,流体动力学fluid dynamics)对理解人体循环系统内的血流至关重要。研究人员研究血液在动脉和静脉中移动时的行为,这可以带来对心血管健康的见解。通过应用流体动力学fluid dynamics)原理,医疗专业人员可以开发更好的诊断工具和治疗策略,以应对高血压和动脉粥样硬化等疾病。总之,流体动力学fluid dynamics)是一个重要的研究领域,影响着从工程到气象和医学等多个领域。它的原理帮助我们理解流体的复杂行为,促进了改善我们日常生活的创新。随着技术的进步,流体动力学fluid dynamics)的重要性只会继续增长,使其成为未来研究和应用的重要领域。

相关单词

fluid

fluid详解:怎么读、什么意思、用法

dynamics

dynamics详解:怎么读、什么意思、用法