fisher ellipsoid of 1960

简明释义

1960年确定的地球椭圆形(长半径=6

英英释义

The Fisher ellipsoid of 1960 refers to a geometric representation used in statistics, particularly in the context of estimating the covariance matrix of multivariate data. It is associated with the Fisher information matrix and provides a way to visualize the uncertainty and variability of parameter estimates.

1960年的费舍尔椭球体是一个在统计学中使用的几何表示,特别是在估计多变量数据的协方差矩阵时。它与费舍尔信息矩阵相关联,提供了一种可视化参数估计的不确定性和变异性的方法。

例句

1.When mapping the area, we referenced the fisher ellipsoid of 1960 to ensure accuracy.

在绘制该区域时,我们参考了1960年费舍尔椭球体以确保准确性。

2.The fisher ellipsoid of 1960 is essential for understanding the Earth's shape in various scientific studies.

在各种科学研究中,理解地球形状的关键是1960年费舍尔椭球体

3.The geodesic calculations for our new survey were based on the fisher ellipsoid of 1960, which is widely used in geodesy.

我们新测量的测地计算是基于1960年费舍尔椭球体,它在测地学中被广泛使用。

4.For our navigation system, we utilized the fisher ellipsoid of 1960 to improve positional accuracy.

为了我们的导航系统,我们利用了1960年费舍尔椭球体来提高定位精度。

5.The calculations for the satellite's orbit were performed using the fisher ellipsoid of 1960 model.

卫星轨道的计算是使用1960年费舍尔椭球体模型进行的。

作文

The concept of the fisher ellipsoid of 1960 is an important one in the field of statistics, particularly in the context of multivariate analysis. Developed by the renowned statistician Ronald A. Fisher, this ellipsoid serves as a geometric representation of the variance and covariance of a multivariate normal distribution. Understanding the fisher ellipsoid of 1960 allows researchers to visualize the relationships between multiple variables, which can be crucial for data interpretation and hypothesis testing.To grasp the significance of the fisher ellipsoid of 1960, it is essential to first understand what an ellipsoid is. An ellipsoid is a three-dimensional shape that resembles a stretched or compressed sphere. In the context of statistics, the fisher ellipsoid of 1960 represents the region where a certain percentage of data points are expected to fall, given a multivariate normal distribution. The axes of the ellipsoid correspond to the principal components of the data, which are derived from the covariance matrix.The fisher ellipsoid of 1960 is particularly useful because it provides a visual tool for understanding how variables interact with one another. For instance, if two variables are highly correlated, the ellipsoid will be elongated in the direction of those variables, indicating that changes in one variable are associated with changes in the other. Conversely, if the variables are uncorrelated, the ellipsoid will be more spherical, suggesting independence between the variables.In practical applications, the fisher ellipsoid of 1960 can be used in various fields such as biology, finance, and engineering. For example, in biology, researchers might use the ellipsoid to analyze the relationship between different environmental factors and species populations. In finance, analysts may apply the concept to evaluate the risk and return profiles of different investment portfolios, thereby optimizing asset allocation.Moreover, the fisher ellipsoid of 1960 plays a crucial role in the method of maximum likelihood estimation. This statistical method aims to estimate the parameters of a statistical model in such a way that the observed data is most probable under the assumed model. The ellipsoid helps in identifying the parameter estimates that yield the highest likelihood, which is fundamental in statistical inference.In conclusion, the fisher ellipsoid of 1960 is not just a theoretical construct but a practical tool that enhances our understanding of multivariate distributions. By visualizing the relationships between variables, it aids in data analysis and decision-making across various disciplines. As we continue to collect and analyze complex datasets, the relevance of the fisher ellipsoid of 1960 remains significant, providing insights that drive research and innovation in numerous fields.

1960年的Fisher椭球体概念在统计学领域,特别是在多变量分析的背景下,是一个重要的概念。它由著名统计学家罗纳德·A·费舍尔(Ronald A. Fisher)提出,这个椭球体作为多元正态分布的方差和协方差的几何表示。理解1960年的Fisher椭球体使研究人员能够可视化多个变量之间的关系,这对于数据解释和假设检验至关重要。要理解1960年的Fisher椭球体的重要性,首先需要了解什么是椭球体。椭球体是一种三维形状,类似于被拉伸或压缩的球体。在统计学的背景下,1960年的Fisher椭球体代表了在给定多元正态分布的情况下,预计某一百分比的数据点将落入的区域。椭球体的轴对应于数据的主成分,这些主成分是从协方差矩阵中导出的。1960年的Fisher椭球体特别有用,因为它提供了一个可视化工具来理解变量之间的相互作用。例如,如果两个变量高度相关,椭球体将在这些变量的方向上拉长,表明一个变量的变化与另一个变量的变化相关。相反,如果变量不相关,椭球体将更接近球形,暗示变量之间的独立性。在实际应用中,1960年的Fisher椭球体可以用于生物学、金融和工程等多个领域。例如,在生物学中,研究人员可能使用该椭球体分析不同环境因素与物种种群之间的关系。在金融领域,分析师可能会应用这一概念来评估不同投资组合的风险和回报特征,从而优化资产配置。此外,1960年的Fisher椭球体在最大似然估计方法中发挥着至关重要的作用。这种统计方法旨在以最可能的方式估计统计模型的参数,使得观察到的数据在假定的模型下最为可能。椭球体帮助识别出产生最高似然的参数估计,这在统计推断中是基础。总之,1960年的Fisher椭球体不仅仅是一个理论构造,而是一个实用工具,增强了我们对多元分布的理解。通过可视化变量之间的关系,它有助于各个学科的数据分析和决策制定。随着我们继续收集和分析复杂的数据集,1960年的Fisher椭球体的相关性仍然显著,为推动各个领域的研究和创新提供了洞察。

相关单词

fisher

fisher详解:怎么读、什么意思、用法