rhombus

简明释义

[ˈrɒmbəs][ˈrɑːmbəs]

n. [数] 菱形;[数] 斜方形

复 数 r h o m b u s e s 或 r h o m b i

英英释义

A rhombus is a four-sided polygon (quadrilateral) with all sides having equal length.

菱形是一种四边形(四边形),所有边的长度相等。

In a rhombus, opposite angles are equal, and adjacent angles are supplementary.

在菱形中,对角相等,邻角互补。

The diagonals of a rhombus bisect each other at right angles.

菱形的对角线在直角处互相平分。

单词用法

area of a rhombus

菱形的面积

diagonal of a rhombus

菱形的对角线

perimeter of a rhombus

菱形的周长

rhombus shape

菱形形状

rhombus properties

菱形性质

rhombus angles

菱形角度

同义词

diamond

菱形

The diamond shape is often used in playing cards.

菱形的形状常用于扑克牌中。

parallelogram

平行四边形

In geometry, a rhombus is a special type of parallelogram where all sides are equal.

在几何学中,菱形是一种特殊的平行四边形,所有边长相等。

反义词

rectangle

矩形

A rectangle has opposite sides that are equal and angles that are 90 degrees.

矩形的对边相等且角度为90度。

square

正方形

A square is a special type of rectangle where all sides are equal.

正方形是所有边相等的一种特殊矩形。

例句

1.But Costa formalised it, and as Flamengo were successful, his rhombus midfield spread.

但是科斯塔把它正式化了,他的菱形中场随着弗拉门戈的成功传播开来。

2.Ephraim powder, rhombus silk " and see stars KongLan upward . ""

莲粉飘红,菱丝翳碧,仰见明星空栏。

3.The most typical is rhombus ornamental decoration.

最典型的是菱格图案画装饰。

4.Rhombus thought model is analyzed in the paper, and it is also applied into the design of cleaner.

分析了菱形思维模型,同时将它用在吸尘器设计实例中。

5.The inverted nine - spot rhombus pattern has two adjustable directions of well array.

菱形反九点井网有两个可调的井排方向,是适合于裂缝和砂体方向性明显油藏的最佳井网。

6.There is a large yellow rhombus in the center.

中间有一个大的黄色菱形。

7.The superoxide dismutase was rhombus crystal, PAGE electropherogram showed that it was a homogeneous protein.

该酶蛋白结晶呈菱形,PAGE法显示为均一的蛋白谱带。

8.In this paper, a new rhombus thought method to imitate human creativity activity is proposed.

提出一种基于多级菱形思维的产品方案设计新方法。

9.This kind of crystal takes the shape of an irregular rhombus.

这种结晶体呈不规则菱形。

10.In geometry class, we learned that a rhombus has all sides equal in length.

在几何课上,我们学习到菱形的所有边长相等。

11.The diamond shape on playing cards is a rhombus.

扑克牌上的钻石形状是一个菱形

12.A rhombus can be defined as a parallelogram with equal adjacent sides.

一个菱形可以定义为一个具有相等邻边的平行四边形。

13.The shape of the kite is a rhombus.

风筝的形状是一个菱形

14.To find the area of a rhombus, you can use the formula: Area = (d1 * d2) / 2.

要计算菱形的面积,可以使用公式:面积 = (d1 * d2) / 2。

作文

A rhombus is a fascinating geometric shape that captures the interest of many students and enthusiasts of mathematics. It is defined as a quadrilateral with all four sides of equal length. This characteristic makes the rhombus a special type of parallelogram, where opposite sides are both parallel and equal in length. The angles of a rhombus can vary, but the opposite angles are always equal, and the adjacent angles are supplementary, meaning they add up to 180 degrees.In everyday life, we encounter the rhombus in various forms and contexts. For instance, the diamond shape in playing cards is a classic example of a rhombus. Additionally, many tiles and patterns used in art and architecture feature this unique shape. Understanding the properties of a rhombus can enhance our appreciation for design and symmetry in the world around us.To further explore the rhombus, let’s delve into its properties. One interesting aspect is that the diagonals of a rhombus intersect at right angles (90 degrees) and bisect each other. This means that each diagonal divides the rhombus into two congruent triangles. The area of a rhombus can be calculated using the formula: Area = (d1 * d2) / 2, where d1 and d2 are the lengths of the diagonals. This formula illustrates how the diagonals play a crucial role in determining the size of the rhombus.Moreover, the rhombus is often used in various mathematical problems, particularly in geometry. Students learn to identify and calculate the properties of a rhombus as part of their curriculum. For example, they may be tasked with finding the perimeter of a rhombus, which can be calculated simply by multiplying the length of one side by four, given that all sides are equal. The rhombus also has connections to other shapes and concepts in mathematics. For instance, it can be transformed into a rectangle if the angles are right angles, or into a square if all angles are right angles and all sides are equal. This versatility makes the rhombus an important subject of study in geometry, as it bridges the gap between different types of quadrilaterals.In conclusion, the rhombus is more than just a simple shape; it is a fundamental concept in mathematics that helps us understand the properties of quadrilaterals. Through its unique characteristics and relationships with other shapes, the rhombus offers insights into the beauty and complexity of geometry. By studying the rhombus, we not only enhance our mathematical skills but also develop a deeper appreciation for the patterns and designs that surround us in our daily lives. Whether in nature, art, or architecture, the rhombus remains a significant and intriguing figure that continues to inspire curiosity and creativity.

一个菱形是一个迷人的几何形状,吸引了许多学生和数学爱好者的兴趣。它被定义为一种四边形,具有四条边长度相等。这一特征使得菱形成为一种特殊类型的平行四边形,其中对边既平行又相等。菱形的角度可以变化,但对角总是相等,而邻角是互补的,这意味着它们的和为180度。在日常生活中,我们在各种形式和背景中遇到菱形。例如,扑克牌中的钻石形状就是一个经典的菱形示例。此外,许多艺术和建筑中使用的瓷砖和图案都具有这种独特的形状。理解菱形的特性可以增强我们对周围世界设计和对称性的欣赏。为了进一步探索菱形,让我们深入研究它的性质。一个有趣的方面是,菱形的对角线以直角(90度)相交并互相平分。这意味着每条对角线将菱形分成两个全等的三角形。菱形的面积可以使用公式计算:面积 = (d1 * d2) / 2,其中d1和d2是对角线的长度。这个公式说明了对角线在确定菱形的大小方面的重要作用。此外,菱形经常用于各种数学问题,特别是在几何学中。学生们学习识别和计算菱形的属性,作为他们课程的一部分。例如,他们可能会被要求计算菱形的周长,可以简单地通过将一条边的长度乘以四来计算,因为所有边都是相等的。菱形还与数学中的其他形状和概念有关。例如,如果角度为直角,它可以转化为矩形;如果所有角度都是直角且所有边都相等,它可以转化为正方形。这种多样性使得菱形成为几何学研究中的一个重要主题,因为它弥合了不同类型四边形之间的差距。总之,菱形不仅仅是一个简单的形状;它是数学中的一个基本概念,帮助我们理解四边形的特性。通过其独特的特征和与其他形状的关系,菱形为我们提供了关于几何之美和复杂性的见解。通过研究菱形,我们不仅增强了我们的数学技能,还加深了对日常生活中包围我们的模式和设计的欣赏。无论是在自然、艺术还是建筑中,菱形仍然是一个重要而引人入胜的形状,继续激发着好奇心和创造力。