feedback coupling
简明释义
反馈耦合
英英释义
Feedback coupling refers to a process in which the output of a system is fed back into the system as input, influencing its subsequent behavior. | 反馈耦合指的是一个过程,其中系统的输出被反馈回系统作为输入,从而影响其后续行为。 |
例句
1.The feedback coupling 反馈耦合 between the sensor data and the algorithm allows for real-time adjustments.
传感器数据与算法之间的反馈耦合 反馈耦合 允许实时调整。
2.In control theory, feedback coupling 反馈耦合 is essential for maintaining stability in dynamic systems.
在控制理论中,反馈耦合 反馈耦合 对于维持动态系统的稳定性至关重要。
3.Our project relies heavily on feedback coupling 反馈耦合 to ensure that all team members are aligned.
我们的项目严重依赖于反馈耦合 反馈耦合 以确保所有团队成员保持一致。
4.The system's performance improved due to the effective feedback coupling 反馈耦合 between the user interface and the backend services.
由于用户界面与后端服务之间有效的反馈耦合 反馈耦合,系统性能得到了改善。
5.The researchers studied the effects of feedback coupling 反馈耦合 in ecological systems to understand predator-prey dynamics.
研究人员研究了生态系统中反馈耦合 反馈耦合 的影响,以了解捕食者与猎物的动态关系。
作文
In the realm of systems theory and control engineering, the concept of feedback coupling plays a crucial role in understanding how different components of a system interact with one another. Essentially, feedback coupling refers to the process by which the output of a system is fed back into the system as input, creating a loop that can enhance or stabilize the overall performance of the system. This interplay is fundamental in various applications, from electronic circuits to biological systems, and even in social dynamics.To illustrate the significance of feedback coupling, consider an example from biology: the human body’s temperature regulation. When the body temperature rises above the normal range, the hypothalamus detects this change and triggers mechanisms such as sweating and increased blood flow to the skin. As the body cools down, this information is fed back to the hypothalamus, allowing it to adjust its responses accordingly. This is a classic example of feedback coupling, where the body's response to temperature changes helps maintain homeostasis, ensuring that the internal environment remains stable despite external fluctuations.In engineering, feedback coupling is often employed in control systems to improve stability and performance. For instance, in an automatic cruise control system in a car, the speed of the vehicle is continuously monitored. If the car begins to exceed the set speed, the system automatically reduces the throttle to slow down. Conversely, if the speed drops below the desired level, the system increases throttle input. This continuous adjustment based on feedback is a clear demonstration of feedback coupling, allowing for precise control over the vehicle's speed.Furthermore, feedback coupling can also be observed in social systems, such as economies or ecosystems. In economic models, consumer behavior can influence market prices, which in turn affects consumer purchasing decisions. This cyclical interaction highlights the importance of feedback coupling in understanding market dynamics. Similarly, in ecological systems, the population of predators and prey can affect each other's numbers, demonstrating how feedback coupling operates within natural environments.However, while feedback coupling can lead to enhanced stability and performance, it can also result in instability if not properly managed. For example, in electronic circuits, excessive feedback can cause oscillations or even system failure. Therefore, engineers and system designers must carefully consider the parameters of feedback coupling to ensure that the system operates effectively without becoming chaotic.In conclusion, feedback coupling is a vital concept that transcends multiple disciplines, providing insights into how systems operate and interact. Whether in biological contexts, engineering applications, or social dynamics, understanding feedback coupling allows us to appreciate the complexity of systems and the importance of feedback loops in maintaining balance and functionality. As we continue to explore and innovate within these fields, the principles of feedback coupling will undoubtedly remain a key focus for researchers and practitioners alike.
在系统理论和控制工程领域,反馈耦合的概念在理解系统不同组件之间如何相互作用方面起着至关重要的作用。基本上,反馈耦合是指一个系统的输出作为输入反馈到系统中,形成一个循环,可以增强或稳定系统的整体性能。这种相互作用在各种应用中都是基础,从电子电路到生物系统,甚至在社会动态中。为了说明反馈耦合的重要性,考虑一个来自生物学的例子:人体的温度调节。当体温超过正常范围时,下丘脑会检测到这一变化,并触发出汗和增加皮肤血流等机制。当身体降温时,这一信息反馈给下丘脑,使其能够相应地调整反应。这是反馈耦合的经典例子,身体对温度变化的反应有助于维持内稳态,确保内部环境在外部波动下保持稳定。在工程领域,反馈耦合通常用于控制系统,以提高稳定性和性能。例如,在汽车的自动巡航控制系统中,车辆的速度会被持续监测。如果汽车开始超过设定速度,系统会自动减少油门以减速。相反,如果速度低于所需水平,系统则会增加油门输入。这种基于反馈的持续调整清楚地展示了反馈耦合,允许对车辆速度进行精确控制。此外,反馈耦合也可以在社会系统中观察到,例如经济或生态系统。在经济模型中,消费者行为可以影响市场价格,进而影响消费者的购买决策。这种循环互动突显了反馈耦合在理解市场动态中的重要性。同样,在生态系统中,捕食者和猎物的数量可以相互影响,展示了自然环境中反馈耦合的运作。然而,尽管反馈耦合可以导致增强的稳定性和性能,但如果管理不当,也可能导致不稳定。例如,在电子电路中,过度的反馈可能导致振荡甚至系统故障。因此,工程师和系统设计师必须仔细考虑反馈耦合的参数,以确保系统有效运行而不变得混乱。总之,反馈耦合是一个跨越多个学科的重要概念,为我们提供了关于系统如何运作和相互作用的见解。无论是在生物背景、工程应用还是社会动态中,理解反馈耦合使我们能够欣赏系统的复杂性以及反馈循环在维持平衡和功能性方面的重要性。随着我们继续在这些领域探索和创新,反馈耦合的原则无疑将继续成为研究人员和从业者关注的重点。
相关单词