trigonometrical

简明释义

[ˌtrɪɡənəˈmetrɪk(ə)l][ˌtrɪɡənəˈmetrɪkl]

adj. [数] 三角法的;三角学的

英英释义

Relating to trigonometry, which is the branch of mathematics dealing with the relationships between the angles and sides of triangles.

与三角学相关的,三角学是研究三角形的角和边之间关系的数学分支。

单词用法

trigonometrical calculations

三角计算

trigonometrical equations

三角方程

trigonometrical analysis

三角分析

apply trigonometrical principles

应用三角原理

solve trigonometrical problems

解决三角问题

understand trigonometrical concepts

理解三角概念

同义词

trigonometric

三角函数的

trigonometric functions are essential in calculus.

三角函数在微积分中是必不可少的。

geometric

几何的

The geometric properties of shapes can be analyzed using trigonometric principles.

可以使用三角学原理分析形状的几何特性。

反义词

linear

线性的

The equation is linear, making it easier to solve.

这个方程是线性的,因此更容易解决。

non-trigonometric

非三角的

In this context, we will use non-trigonometric methods for calculation.

在这种情况下,我们将使用非三角方法进行计算。

例句

1.Trigonometrical function in the teaching of mathematics in secondary schools, have a decisive position.

三角函数的教学在中学数学教学中有着举足轻重的地位。

2.Trigonometrical function reflects Yuan Movement and the Movement of mutual conversion and the corresponding linear relationship is the only primary function of the cycle function .

三角函数反映了圆运动和直线运动的相互转化与对应关系,是初等函数中唯一的周期函数。

3.In this paper, the deflection and stress function in terms of trigonometrical function and polynomial expression are first proposed.

本文首先选择由三角函数和多项式组成的挠度函数和应力函数。

4.Trigonometrical function reflects Yuan Movement and the Movement of mutual conversion and the corresponding linear relationship is the only primary function of the cycle function .

三角函数反映了圆运动和直线运动的相互转化与对应关系,是初等函数中唯一的周期函数。

5.In this paper, two new trigonometrical inequalities are given, and applied to discuss triangle shapes.

给出两个新的三角不等式,并将其应用于讨论角成等比的三角形形状。

6.Students often struggle with trigonometrical identities in advanced math classes.

学生们在高级数学课程中常常对三角恒等式感到困惑。

7.In physics, trigonometrical functions are essential for solving wave equations.

在物理学中,三角函数对于解决波动方程至关重要。

8.The architect applied trigonometrical principles to create accurate blueprints.

建筑师应用三角原理来制作准确的蓝图。

9.The engineer used trigonometrical calculations to determine the height of the building.

工程师使用三角测量计算来确定建筑物的高度。

10.The surveyor relied on trigonometrical methods to measure land accurately.

测量员依靠三角测量方法来准确测量土地。

作文

Trigonometry is a branch of mathematics that deals with the relationships between the sides and angles of triangles. One of the key aspects of trigonometry is its application in various fields, including physics, engineering, and architecture. The term trigonometrical refers to anything related to this field of mathematics. Understanding trigonometrical concepts is essential for solving problems that involve angles and distances. For instance, in physics, the principles of trigonometrical functions are used to analyze wave patterns, which are fundamental in understanding sound and light. Engineers also rely on trigonometrical calculations when designing structures, ensuring that they can withstand forces and loads. In architecture, trigonometrical methods are employed to create designs that are not only aesthetically pleasing but also structurally sound. Architects often use trigonometrical ratios to determine the height of buildings and the angles of roofs, allowing them to create safe and functional spaces. Furthermore, navigation relies heavily on trigonometrical principles. When pilots and sailors plot their courses, they use trigonometrical calculations to determine their position relative to landmarks and destinations. This is crucial for ensuring safe travel across vast distances.Moreover, the study of trigonometrical functions, such as sine, cosine, and tangent, provides insights into periodic phenomena. These functions describe how certain quantities vary over time or space, making them invaluable in fields like music, where sound waves can be represented using trigonometrical models. In addition to practical applications, trigonometrical concepts are also important for theoretical mathematics. They form the foundation for more advanced topics, such as calculus and complex analysis, which further explore the behavior of functions and their applications.In conclusion, the significance of trigonometrical principles extends far beyond the classroom. From engineering to music, these concepts play a vital role in our understanding of the world around us. Mastering trigonometrical skills not only enhances problem-solving abilities but also opens doors to various career opportunities in science and technology. Therefore, it is essential for students and professionals alike to appreciate the importance of trigonometrical knowledge and its applications in everyday life.

三角学是数学的一个分支,涉及三角形的边和角之间的关系。三角学的一个关键方面是它在物理、工程和建筑等各个领域的应用。术语trigonometrical指与这一数学领域相关的任何事物。理解trigonometrical概念对于解决涉及角度和距离的问题至关重要。例如,在物理学中,trigonometrical函数的原理用于分析波动模式,这在理解声音和光的过程中是基础。工程师在设计结构时也依赖于trigonometrical计算,以确保它们能够承受各种力量和负载。在建筑学中,trigonometrical方法被用来创建既美观又结构合理的设计。建筑师常常使用trigonometrical比率来确定建筑物的高度和屋顶的角度,使其能够创造出安全且功能齐全的空间。此外,导航在很大程度上依赖于trigonometrical原理。当飞行员和水手绘制他们的航线时,他们使用trigonometrical计算来确定自己相对于地标和目的地的位置。这对于确保在广阔的距离中安全旅行至关重要。此外,trigonometrical函数(如正弦、余弦和正切)的研究提供了对周期现象的深入了解。这些函数描述某些量如何随时间或空间变化,使它们在音乐等领域中变得不可或缺,在音乐中,声波可以用trigonometrical模型表示。除了实际应用,trigonometrical概念对于理论数学也很重要。它们构成了更高级主题的基础,如微积分和复分析,进一步探讨函数的行为及其应用。总之,trigonometrical原理的重要性远远超出了课堂。从工程到音乐,这些概念在我们理解周围世界的过程中发挥着至关重要的作用。掌握trigonometrical技能不仅增强了解决问题的能力,而且为科学和技术领域的各种职业机会打开了大门。因此,学生和专业人士都应重视trigonometrical知识及其在日常生活中的应用。