cryptography
简明释义
英[krɪpˈtɒɡrəfi]美[krɪpˈtɑːɡrəfi]
n. 密码学;密码使用法
英英释义
单词用法
公钥密码学 | |
对称密码学 | |
密码学算法 | |
数字密码学 | |
应用密码学 | |
理解密码学 | |
实施密码学 | |
密码学的进展 |
同义词
反义词
例句
1.However, public key Cryptography takes things a step further and introduces the idea of signed public keys.
然而,公钥密码术更进一步,它引入了签名公钥的概念。
2.In this demonstration, I use the TripleDES block encryption algorithm of the SunJCE cryptography provider.
在这个演示中,我使用了SunJCE密码术供应商的tripledes块加密算法。
3.To request a certificate, you need to generate a keypair using cryptography software.
要请求证书,您需要使用加密软件生成一个密钥对。
4.Asymmetric cryptography: Public-key cryptography (these two terms are synonyms).
不对称加密:公钥加密(这两个术语是同义词)。
5.The process of encryption or decryption is generally known as cryptography, and relies on mathematical algorithms.
加密过程或解密过程一般被称作密码术,且依赖于数学算法。
6.Algorithm Type defines whether the cryptography algorithm is symmetric, asymmetric, or a message digest.
算法类型定义加加密算法是对称的、非对称的还是消息摘要。
7.All the clever cryptography means BitCoin dealings are difficult to trace.
所有聪明的密码学家都表示跟踪比特币交易很困难。
8.Experts in cryptography 密码学 work to develop new encryption algorithms.
在密码学 cryptography 领域的专家致力于开发新的加密算法。
9.Many online banking systems use cryptography 密码学 to protect user data.
许多在线银行系统使用密码学 cryptography 来保护用户数据。
10.In modern communication, cryptography 密码学 is essential for securing messages.
在现代通信中,密码学 cryptography 对于保护信息至关重要。
11.The field of cryptography 密码学 has evolved significantly with the advent of quantum computing.
随着量子计算的出现,密码学 cryptography 领域发生了显著变化。
12.End-to-end cryptography 密码学 ensures that only the communicating users can read the messages.
端到端的密码学 cryptography 确保只有通信的用户可以读取消息。
作文
In today's digital age, the importance of securing information cannot be overstated. One of the key methods employed to protect sensitive data is known as cryptography, which refers to the practice of encoding messages to keep them safe from unauthorized access. The term itself comes from the Greek words 'kryptos,' meaning hidden, and 'grapho,' meaning to write. This ancient technique has evolved significantly over the centuries, adapting to the needs of modern communication and technology.The primary goal of cryptography is to ensure confidentiality, integrity, and authenticity of information. Confidentiality means that only authorized parties can access the information, while integrity ensures that the data has not been altered during transmission. Authenticity verifies the identity of the parties involved in the communication. These principles are crucial in various applications, including online banking, e-commerce, and private communications.Historically, cryptography has played a vital role in military and diplomatic communications. Ancient civilizations used simple substitution ciphers to send secret messages. For example, Julius Caesar famously used a cipher that shifted letters in the alphabet by a fixed number. However, as technology advanced, so did the methods of encryption. The invention of computers brought about more sophisticated algorithms, such as symmetric and asymmetric encryption.Symmetric encryption uses a single key for both encryption and decryption, making it efficient for processing large amounts of data. However, the challenge lies in securely sharing the key between parties. On the other hand, asymmetric encryption employs a pair of keys: a public key for encryption and a private key for decryption. This method enhances security, as the public key can be shared openly without compromising the private key.Today, cryptography is an essential component of cybersecurity. With the rise of cyber threats, organizations must implement robust encryption techniques to safeguard their data. For instance, secure socket layer (SSL) certificates use cryptography to establish a secure connection between web servers and browsers, ensuring that sensitive information such as credit card numbers and personal details remain protected.Moreover, the advent of blockchain technology has further highlighted the significance of cryptography. Cryptocurrencies like Bitcoin rely on cryptographic principles to secure transactions and control the creation of new units. The decentralized nature of blockchain makes it inherently resistant to tampering, providing a level of security that traditional financial systems struggle to achieve.As we navigate through an increasingly interconnected world, understanding cryptography becomes paramount. It empowers individuals and organizations to communicate securely and protect their sensitive information from prying eyes. Furthermore, as quantum computing emerges, the field of cryptography will face new challenges and opportunities, necessitating ongoing research and innovation.In conclusion, cryptography is more than just a technical discipline; it is a fundamental aspect of our digital lives. By ensuring confidentiality, integrity, and authenticity, cryptography enables us to engage in secure communications and transactions. As we continue to embrace technological advancements, the role of cryptography will only become more critical in safeguarding our information and privacy.
在当今的数字时代,保护信息的重要性不容小觑。保护敏感数据的一种关键方法被称为密码学,它指的是编码消息以防止未经授权访问的实践。这个术语本身源自希腊词汇“kryptos”,意为隐藏,以及“grapho”,意为书写。这种古老的技术在几个世纪中经历了显著的发展,以适应现代通信和技术的需求。密码学的主要目标是确保信息的机密性、完整性和真实性。机密性意味着只有授权方可以访问信息,而完整性确保数据在传输过程中未被更改。真实性验证参与通信各方的身份。这些原则在各种应用中至关重要,包括在线银行、电子商务和私人通信。历史上,密码学在军事和外交通信中发挥了重要作用。古代文明使用简单的替换密码发送秘密消息。例如,尤利乌斯·凯撒以字母表中的固定数字移位的密码而闻名。然而,随着技术的进步,加密方法也随之发展。计算机的发明带来了更复杂的算法,如对称加密和非对称加密。对称加密使用单个密钥进行加密和解密,使其在处理大量数据时高效。然而,挑战在于安全地在各方之间共享密钥。另一方面,非对称加密使用一对密钥:一个用于加密的公钥和一个用于解密的私钥。这种方法增强了安全性,因为公钥可以公开共享而不会危及私钥。如今,密码学是网络安全的重要组成部分。随着网络威胁的上升,组织必须实施强大的加密技术来保护其数据。例如,安全套接层(SSL)证书使用密码学在Web服务器和浏览器之间建立安全连接,确保信用卡号码和个人详细信息等敏感信息保持受保护。此外,区块链技术的出现进一步突显了密码学的重要性。像比特币这样的加密货币依赖于密码原则来保护交易并控制新单位的创建。区块链的去中心化特性使其在固有上抵抗篡改,提供了传统金融系统难以实现的安全级别。随着我们在一个日益互联的世界中前行,理解密码学变得至关重要。它使个人和组织能够安全地进行交流,保护他们的敏感信息免受窥探。此外,随着量子计算的出现,密码学领域将面临新的挑战和机遇,迫切需要持续的研究和创新。总之,密码学不仅仅是一门技术学科;它是我们数字生活的基本方面。通过确保机密性、完整性和真实性,密码学使我们能够进行安全的通信和交易。随着我们继续接受技术进步,密码学的角色将在保护我们的信息和隐私方面变得更加重要。