antimatter

简明释义

[ˈæntimætə(r)][ˈæntimætər]

n. [物] 反物质

英英释义

Antimatter is a type of matter that is composed of antiparticles, which have the same mass as particles of ordinary matter but opposite charges and quantum numbers.

反物质是一种由反粒子组成的物质,反粒子的质量与普通物质的粒子相同,但电荷和量子数相反。

单词用法

antimatter production

反物质生产

antimatter annihilation

反物质湮灭

antimatter research

反物质研究

antimatter particles

反物质粒子

create antimatter

创造反物质

store antimatter

储存反物质

detect antimatter

探测反物质

uses of antimatter

反物质的用途

同义词

negative matter

负物质

Negative matter is theorized to annihilate positive matter upon contact.

负物质被理论上认为在接触时会与正物质湮灭。

opposite matter

对立物质

In physics, opposite matter refers to particles that have opposite charges compared to their matter counterparts.

在物理学中,对立物质指的是与其物质对应粒子具有相反电荷的粒子。

反义词

matter

物质

All known matter in the universe is composed of atoms.

宇宙中已知的所有物质都是由原子组成的。

substance

物质,材料

Different substances have different properties.

不同的物质具有不同的特性。

例句

1.Antimatter is a strange cousin to the stuff that makes up galaxies, stars and us.

反物质是组成宇宙中的星系、恒星和我们人类原材料(即指物质)的古怪堂兄弟。

2.In principle, antimatter could power even the smallest devices.

原则上来说,反物质甚至可以为最小的装置提供能量。

3.From bizarre antimatter to experiments that tie light up in knots, physics has revealed some spooky sides of our world.

从奇异的反物质到把光捆扎成结的实验,物理学已经揭示了我们世界的一些幽灵般的方面。

4.The ultimate power source, antimatter packs more energy than nuclear fuel.

作为一种终极能源,反物质甚至蕴含着比核能还要多的能量。

5.It may even detect an 'anti-universe' made of antimatter, the physicists say.

物理学家声称,它甚至有望探测到由反物质组成的“反宇宙”。

6.What Is Antimatter?

什么是反物质?

7.Scientists Building Largest Antimatter Trap ever.

美国科学家正在建造史上最大的反物质捕捉设备。

8.Some researchers believe that antimatter 反物质 could be used for advanced propulsion systems in space travel.

一些研究人员认为,反物质 antimatter可以用于太空旅行中的先进推进系统。

9.In theoretical physics, antimatter 反物质 is often discussed in relation to black holes.

在理论物理学中,反物质 antimatter通常与黑洞相关讨论。

10.Scientists are studying antimatter 反物质 to understand the fundamental forces of the universe.

科学家们正在研究反物质 antimatter以理解宇宙的基本力量。

11.The annihilation of antimatter 反物质 and matter releases a tremendous amount of energy.

反物质 antimatter和物质的湮灭中释放出巨大的能量。

12.The production of antimatter 反物质 in laboratories is a highly complex and expensive process.

在实验室中生产反物质 antimatter是一个非常复杂且昂贵的过程。

作文

Antimatter is a fascinating and complex concept in the realm of physics that has intrigued scientists for decades. To understand what antimatter (反物质) is, we first need to delve into the fundamental building blocks of our universe: atoms. Atoms are made up of protons, neutrons, and electrons. Protons and neutrons reside in the nucleus at the center of the atom, while electrons orbit around this nucleus. Each of these particles carries a specific charge; protons have a positive charge, electrons have a negative charge, and neutrons are neutral. However, antimatter (反物质) is composed of the same fundamental particles but with opposite charges. This means that an antiproton, which is the antimatter counterpart of a proton, has a negative charge, while a positron, the antimatter equivalent of an electron, carries a positive charge. When antimatter (反物质) comes into contact with matter, the two annihilate each other in a burst of energy, described by Einstein’s famous equation E=mc². This reaction releases a tremendous amount of energy, which is why antimatter (反物质) is often considered a potential source of fuel for future space travel or advanced energy systems.The concept of antimatter (反物质) was first proposed in the early 20th century by physicist Paul Dirac, who predicted the existence of antimatter through his work on quantum mechanics. The first actual discovery of antimatter (反物质) occurred in 1932 when Carl Anderson detected the positron in cosmic rays. Since then, scientists have been able to produce small quantities of antimatter (反物质) in laboratories using particle accelerators. However, creating and storing antimatter (反物质) remains a significant challenge due to its tendency to annihilate upon contact with regular matter.One of the most intriguing aspects of antimatter (反物质) is its role in the universe. According to current theories, the Big Bang should have produced equal amounts of matter and antimatter (反物质). However, our observable universe is predominantly composed of matter, leading to the so-called 'matter-antimatter asymmetry' problem. Scientists are still grappling with this mystery, as it raises profound questions about the nature of the universe and its origins. Why is there so much more matter than antimatter (反物质)? What happened to all the antimatter (反物质) that was supposedly created? These questions remain at the forefront of modern physics research.In popular culture, antimatter (反物质) has been depicted in various forms, often associated with science fiction narratives. Movies and books frequently portray antimatter (反物质) as a powerful weapon or a means of faster-than-light travel. While these representations are not entirely accurate, they do highlight the potential implications of harnessing such a form of energy. In reality, the production of even a tiny amount of antimatter (反物质) is incredibly resource-intensive and costly, making it currently impractical for widespread use.In conclusion, antimatter (反物质) is a captivating topic that bridges the gap between theoretical physics and practical applications. As research continues, our understanding of antimatter (反物质) may unlock new technologies and insights into the fundamental workings of the universe. The mysteries surrounding antimatter (反物质) not only challenge our comprehension of physics but also inspire future generations of scientists to explore the unknown realms of existence. Ultimately, the study of antimatter (反物质) serves as a reminder of the endless possibilities that lie within the fabric of our universe.

反物质是物理学领域一个迷人而复杂的概念,几十年来一直吸引着科学家的兴趣。要理解反物质antimatter),我们首先需要深入探讨我们宇宙的基本构成部分:原子。原子由质子、中子和电子组成。质子和中子位于原子中心的原子核中,而电子则围绕这个原子核旋转。这些粒子每个都带有特定的电荷;质子带正电,电子带负电,中子则是中性的。然而,反物质antimatter)由相同的基本粒子组成,但带有相反的电荷。这意味着,反质子是质子的反物质对应物,它带有负电荷,而正电子是电子的反物质等价物,它带有正电荷。当反物质antimatter)与物质接触时,两者会在一阵能量爆发中湮灭,根据爱因斯坦著名的方程E=mc²描述。这种反应释放出巨大的能量,这就是为什么反物质antimatter)常常被认为是未来太空旅行或先进能源系统的潜在燃料来源。反物质antimatter)的概念最早是由物理学家保罗·狄拉克在20世纪初提出的,他通过对量子力学的研究预测了反物质的存在。1932年,卡尔·安德森在宇宙射线中发现了正电子,成为了第一个实际发现反物质antimatter)的人。从那时起,科学家们能够在实验室中使用粒子加速器生产少量的反物质antimatter)。然而,由于其在接触常规物质时倾向于湮灭,创造和储存反物质antimatter)仍然是一个重大挑战。反物质antimatter)最引人入胜的方面之一是它在宇宙中的角色。根据当前理论,大爆炸应该产生等量的物质和反物质antimatter)。然而,我们可观察到的宇宙主要由物质组成,导致所谓的“物质-反物质不对称”问题。科学家们仍在努力解决这个谜团,因为它提出了关于宇宙本质及其起源的深刻问题。为什么物质比反物质antimatter)多得多?所有的反物质antimatter)都去哪儿了?这些问题仍然处于现代物理研究的前沿。在流行文化中,反物质antimatter)以各种形式出现,通常与科幻叙事相关联。电影和书籍经常将反物质antimatter)描绘为一种强大的武器或超光速旅行的手段。虽然这些表现并不完全准确,但确实突显了利用这种能量形式的潜在意义。实际上,即使是产生微小数量的反物质antimatter)也需要极大的资源和成本,使其目前在广泛使用上不切实际。总之,反物质antimatter)是一个引人入胜的话题,架起了理论物理学与实际应用之间的桥梁。随着研究的持续,我们对反物质antimatter)的理解可能会解锁新技术和对宇宙基本运作的新见解。围绕反物质antimatter)的谜团不仅挑战着我们对物理学的理解,也激励着未来几代科学家去探索未知的存在领域。最终,研究反物质antimatter)提醒我们,在我们宇宙的结构中,潜藏着无尽的可能性。