superfluid

简明释义

[ˈsjuːpəˌfluːɪd][ˌsʊpərˈflʊɪd]

n. 超流体

adj. 超流体性的,超流体的

英英释义

A phase of matter characterized by the complete absence of viscosity, allowing it to flow without dissipating energy.

一种物质的相,具有完全没有粘性的特征,使其能够在不耗散能量的情况下流动。

Superfluidity occurs at very low temperatures and is observed in liquids such as helium-4 and helium-3.

超流体性发生在非常低的温度下,并在液体如氦-4和氦-3中观察到。

单词用法

superfluid state

超流体状态

superfluid transition

超流体转变

superfluid dynamics

超流体动力学

exhibit superfluidity

表现出超流性

enter a superfluid phase

进入超流体相

superfluid behavior

超流体行为

同义词

incompressible fluid

不可压缩流体

Superfluid helium exhibits properties of an incompressible fluid.

超流氦表现出不可压缩流体的特性。

quantum fluid

量子流体

In quantum mechanics, a quantum fluid can flow without viscosity.

在量子力学中,量子流体可以无粘性地流动。

non-viscous fluid

无粘性流体

Researchers study non-viscous fluids to understand superfluidity.

研究人员研究无粘性流体以理解超流现象。

反义词

viscous

粘性的

The syrup is viscous and flows slowly.

这份糖浆是粘性的,流动缓慢。

solid

固体

Ice is a solid that maintains its shape.

冰是一种保持形状的固体。

例句

1.As to the cost, a reportpublished last year by MIT reckons on $25 a tonne to capture CO2 and pressuriseit into a superfluid, and $5 a tonne to transport it to its burial site.

至于费用方面,去年麻省理工发布的一份报告统计说捕获一顿二氧化碳并且加压成超流态需要25美元,而运输到深埋点每吨需要5美元。

2.The thermoacoustic oscillation during film boiling heat transfer in superfluid helium is studied.

以超流氦为对象,对其沸腾传热过程中的热声振荡现象进行了研究。

3.We theoretically verify the existence of the photonic superfluid state in a Kerr nonlinear blackbody and present a feasible way of measuring the radiation properties of such photonic superfluid state.

在理论上证明了克尔非线性黑体中光超流态的存在并给出了测量这种光超流态的方法。

4.The quantization of vortices has also been discussed in the relativistic superfluid in this paper.

另外还讨论了相对论性超流体中的涡旋量子化。

5.There are some anachronisms who love their long-form opera, but the realaction is in the more fluid stuff that can slither around on hotwax —and now the superfluid droplets of MP3s and samples.

是有一些过时的家伙爱听长篇歌剧,但真正的舞台在更加灵活的可以在热蜡上游走的东西上,而现在更有超流体液滴--MP3和音乐样品。

6.Including the superfluid helium, the providing of liquid helium to the plant in the space on orbit, cryogenic wind tunnels techniques, the preparation and application of slush hydrogen etc.

论述超流氦冷却技术及空间飞行中的液氦再供给等在轨机载验证、低温风洞技术、氢浆的制备和应用前景等。

7.Above the critical point, the second-order phase-transition line between the superfluid and the normal phase is determined.

在三相点温度以上,超流和正常相之间有二级相变。

8.The boiling phenomenon in the superfluid helium has some special characteristics.

超流氦的沸腾现象具有一般流体的沸腾现象所没有的特异性质。

9.The unique properties of superfluid (超流体) allow it to flow without viscosity, making it a fascinating subject of study.

由于超流体超流体)的独特性质,它能够无粘性地流动,这使其成为一个引人入胜的研究课题。

10.When cooled below a certain temperature, helium-4 becomes a superfluid (超流体), exhibiting strange behaviors such as climbing walls.

当温度降到某个临界点以下时,氦-4会变成超流体超流体),表现出例如爬墙等奇怪行为。

11.The phenomenon of superfluid (超流体) is crucial for understanding the behavior of matter at absolute zero.

理解超流体超流体)现象对于理解物质在绝对零度下的行为至关重要。

12.In a laboratory, scientists observed that the liquid helium behaved as a superfluid (超流体) at extremely low temperatures.

在实验室中,科学家观察到液态氦在极低温度下表现为一种超流体超流体)。

13.Researchers are exploring how superfluid (超流体) dynamics can be applied in quantum computing technologies.

研究人员正在探索如何将超流体超流体)动力学应用于量子计算技术。

作文

The concept of superfluid refers to a phase of matter that exhibits unique properties, particularly at extremely low temperatures. This phenomenon was first discovered in helium-4, a stable isotope of helium, when it is cooled to near absolute zero. In this state, helium-4 transitions into a superfluid, which flows without viscosity, allowing it to move through tiny openings and around obstacles with ease. This behavior defies classical physics, where liquids are expected to have some resistance when flowing. One of the most fascinating characteristics of superfluid helium is its ability to climb walls and escape from containers. This occurs because the superfluid state allows the atoms to behave collectively, creating a coherent wave-like motion that enables them to overcome gravitational forces. This property has intrigued scientists and led to various experiments aimed at understanding the underlying mechanisms of superfluidity. In addition to helium-4, another isotope, helium-3, also exhibits superfluid behavior, but under different conditions. Helium-3 becomes superfluid at even lower temperatures and displays more complex behaviors due to its fermionic nature. The study of superfluid helium-3 has provided insights into quantum mechanics and the interactions between particles at a fundamental level. The implications of superfluid research extend beyond theoretical physics; they have practical applications as well. For instance, the principles of superfluidity can be applied to developing advanced cooling systems and improving the efficiency of superconductors. Furthermore, understanding superfluid dynamics can aid in the exploration of astrophysical phenomena, such as the behavior of neutron stars, which are believed to contain superfluid components. The study of superfluid states has also contributed to the field of quantum computing. By harnessing the unique properties of superfluid materials, researchers hope to create more efficient qubits, the basic units of quantum information. This could lead to significant advancements in computational power and speed, revolutionizing technology as we know it. In conclusion, the term superfluid encapsulates a remarkable state of matter that challenges our understanding of physics. Its properties, such as the ability to flow without viscosity and climb walls, make it a subject of great interest in both theoretical and experimental physics. As research continues, the potential applications of superfluid phenomena may pave the way for innovations in technology and deepen our understanding of the universe. The exploration of superfluid states not only enhances our grasp of quantum mechanics but also opens doors to new scientific frontiers, making it an exciting area of study for physicists and engineers alike.

超流体(superfluid)的概念指的是一种物质相,特别是在极低温度下表现出独特的性质。这一现象首次在氦-4中被发现,氦-4是氦的一种稳定同位素,当其被冷却至接近绝对零度时,便会转变为超流体。在这种状态下,氦-4以无粘性的方式流动,使其能够轻松地通过微小的开口和绕过障碍物。这种行为违反了经典物理学的预期,即液体在流动时应该有一定的阻力。超流体氦的一个最迷人的特性是它能够爬墙并从容器中逃脱。这是因为超流体状态使得原子能够集体行为,产生一种相干的波动运动,使它们能够克服重力。这一特性引起了科学家的极大兴趣,并导致了各种实验,旨在理解超流体性的基本机制。除了氦-4之外,另一种同位素氦-3在不同条件下也表现出超流体行为。氦-3在更低温度下变为超流体,并由于其费米子特性显示出更复杂的行为。对超流体氦-3的研究为量子力学和粒子之间的相互作用提供了深入的见解。超流体研究的影响不仅限于理论物理;它们也具有实际应用。例如,超流体性原理可以应用于开发先进的冷却系统,提高超导体的效率。此外,理解超流体动力学可以帮助探索天体物理现象,例如中子星的行为,这些星体被认为包含超流体成分。超流体状态的研究还对量子计算领域做出了贡献。通过利用超流体材料的独特性质,研究人员希望创造出更高效的量子比特,即量子信息的基本单位。这可能会导致计算能力和速度的显著提升,彻底改变我们所知的技术。总之,术语超流体概括了一种令人惊叹的物质状态,挑战了我们对物理学的理解。其性质,如无粘性流动和爬墙能力,使其成为理论和实验物理学中备受关注的课题。随着研究的继续,超流体现象的潜在应用可能为技术创新铺平道路,加深我们对宇宙的理解。对超流体状态的探索不仅增强了我们对量子力学的掌握,还为新的科学前沿打开了大门,使其成为物理学家和工程师们激动人心的研究领域。