electron-hole pair

简明释义

电子空穴对

英英释义

An electron-hole pair is a concept in semiconductor physics where an electron is excited from the valence band to the conduction band, leaving behind a vacancy known as a hole. The electron carries a negative charge, while the hole can be considered to carry a positive charge.

电子-空穴对是半导体物理中的一个概念,指的是一个电子从价带被激发到导带,留下一个称为空穴的空缺。电子携带负电荷,而空穴可以被视为携带正电荷。

例句

1.The efficiency of solar cells is often determined by how effectively they can generate an electron-hole pair (电子-空穴对) from sunlight.

太阳能电池的效率通常取决于它们从阳光中生成电子-空穴对(电子-空穴对)的有效性。

2.In photodetectors, the generation of an electron-hole pair (电子-空穴对) is crucial for converting light into an electrical signal.

在光电探测器中,生成电子-空穴对(电子-空穴对)对于将光转换为电信号至关重要。

3.High temperatures can increase the number of thermally generated electron-hole pairs (电子-空穴对) in a material.

高温可以增加材料中热生成的电子-空穴对(电子-空穴对)的数量。

4.In a semiconductor, an absorbed photon can create an electron-hole pair (电子-空穴对) that contributes to electrical conductivity.

在半导体中,吸收的光子可以产生一个电子-空穴对(电子-空穴对),这有助于电导率。

5.When a voltage is applied to a diode, it allows current to flow by facilitating the movement of electron-hole pairs (电子-空穴对).

当电压施加到二极管时,它通过促进电子-空穴对(电子-空穴对)的移动来允许电流流动。

作文

In the realm of semiconductor physics, the concept of an electron-hole pair is fundamental to understanding how electronic devices operate. An electron-hole pair is formed when a semiconductor absorbs energy, typically in the form of light or heat, which excites an electron from the valence band to the conduction band. This process leaves behind a vacancy, or 'hole,' in the valence band, creating a pair of charge carriers that are essential for electrical conduction. To elaborate, semiconductors have a unique property where their conductivity can be altered by introducing impurities, a process known as doping. When a semiconductor is doped with certain materials, it can either increase the number of electrons (n-type) or create additional holes (p-type). In n-type semiconductors, extra electrons are available for conduction, while in p-type semiconductors, the presence of holes allows for the movement of positive charge. The behavior of electron-hole pairs is crucial for the functioning of various devices such as diodes and transistors. When an electron-hole pair is generated, the electron can move freely through the conduction band, while the hole behaves like a positively charged particle, allowing for the flow of current. This movement is what enables devices to switch on and off, amplifying signals or rectifying currents. Moreover, the recombination of electron-hole pairs is equally important. When an electron falls back into a hole, energy is released, often in the form of light. This phenomenon is exploited in light-emitting diodes (LEDs) and laser diodes, where the recombination process produces visible light. The efficiency of these devices heavily relies on the generation and recombination rates of electron-hole pairs. Understanding the dynamics of electron-hole pairs also plays a significant role in solar cell technology. In photovoltaic cells, sunlight generates electron-hole pairs, and the design of the cell aims to maximize the collection of these charge carriers. The more efficient the generation and separation of electron-hole pairs, the higher the energy conversion efficiency of the solar cell. In summary, the concept of an electron-hole pair is not just a theoretical idea but a practical basis for many modern technologies. From the simple LED to complex integrated circuits, the understanding of how electron-hole pairs function allows engineers and scientists to innovate and improve electronic devices. As technology advances, the manipulation of electron-hole pairs will continue to be a key area of research, leading to more efficient and powerful electronic systems. Thus, mastering the concept of electron-hole pairs is essential for anyone interested in the field of electronics and semiconductor physics.

在半导体物理领域,电子-空穴对的概念对于理解电子设备的工作原理至关重要。电子-空穴对是在半导体吸收能量(通常是光或热)时形成的,这种能量使得价带中的一个电子被激发到导带。这一过程在价带中留下了一个空位,或称为“空穴”,形成了一对电荷载流子,这对于电导至关重要。进一步讲,半导体具有独特的性质,可以通过引入杂质来改变其导电性,这一过程称为掺杂。当半导体掺入某些材料时,可以增加电子的数量(n型)或产生额外的空穴(p型)。在n型半导体中,额外的电子可用于导电,而在p型半导体中,空穴的存在则允许正电荷的移动。电子-空穴对的行为对于二极管和晶体管等各种设备的功能至关重要。当生成一个电子-空穴对时,电子可以自由地通过导带移动,而空穴则表现得像一个带正电的粒子,从而允许电流的流动。这种运动使得设备能够开关,放大信号或整流电流。此外,电子-空穴对的复合同样重要。当一个电子回落到一个空穴中时,会释放出能量,通常以光的形式出现。这一现象在发光二极管(LED)和激光二极管中得到了应用,其中复合过程产生可见光。这些设备的效率在很大程度上依赖于电子-空穴对的生成和复合速率。理解电子-空穴对的动态在太阳能电池技术中也起着重要作用。在光伏电池中,阳光生成电子-空穴对,而电池的设计旨在最大限度地收集这些电荷载流子。生成和分离电子-空穴对的效率越高,太阳能电池的能量转换效率就越高。总之,电子-空穴对的概念不仅仅是一个理论想法,而是许多现代技术的实践基础。从简单的LED到复杂的集成电路,理解电子-空穴对的功能使工程师和科学家能够创新并改善电子设备。随着技术的进步,对电子-空穴对的操控将继续成为研究的关键领域,推动更高效、更强大的电子系统的发展。因此,掌握电子-空穴对的概念对于任何对电子和半导体物理感兴趣的人来说都是必不可少的。

相关单词

pair

pair详解:怎么读、什么意思、用法