polygons

简明释义

[ˈpɒlɪɡənz][ˈpɑlɪɡənz]

n. [数]多边形;多边性(polygon 的复数形式)

英英释义

A polygon is a flat, two-dimensional shape that is made up of straight line segments connected to form a closed figure.

多边形是一个平面二维形状,由直线段连接形成一个封闭的图形。

Polygons can have three or more sides, and they are classified based on the number of sides they have, such as triangles, quadrilaterals, pentagons, etc.

多边形可以有三条或更多的边,根据边的数量进行分类,如三角形、四边形、五边形等。

单词用法

regular polygon

正多边形;正多角形

convex polygon

凸多边形;凸面多角形

同义词

shapes

形状

The artist used various shapes in her painting.

艺术家在她的画作中使用了各种形状。

figures

图形

In mathematics, we often analyze different figures to understand their properties.

在数学中,我们经常分析不同的图形以理解它们的属性。

geometric figures

几何图形

Geometric figures can be classified into polygons and non-polygons.

几何图形可以分为多边形和非多边形。

反义词

curves

曲线

The artist prefers curves over polygons in her designs.

这位艺术家在她的设计中更喜欢曲线而不是多边形。

circles

圆形

A circle is a simple closed curve, unlike complex polygons.

圆是一个简单的封闭曲线,与复杂的多边形不同。

例句

1.You can easily draw four-sided polygons in Processing with quad.

在Processing内使用quad可以很容易地绘制有四个边的多边形。

2.Convex polygons are a usefulrepresentation, since we know that there are no obstructions between any twopoints inside a polygon.

凸多边形是一个很有用的表示法,因为我们知道凸多边形内部任意两点之间没有障碍。

3.Computing the intersections of a large number of polygons can be very time consuming.

计算庞大数量多边形的交叉点是非常花时间的。

4.In Face and Edge modes it is used to extrude and position new polygons.

在面和边的模式下它可以用来提取和定位新的多边形。

5.Basic shapes: rectangles, circles, ellipses, lines, polylines, and polygons.

基本形状:矩形、圆、椭圆、直线、折线以及多边形。

6.First, there is a method ST_Centroid defined for polygons.

首先,有一个为多边形定义的方法 ST_Centroid。

7.The manufacturer had an existing table with the depot polygons already defined.

制造商有一个已经定义了维修站多边形的现成的表。

8.Notice how you can create squares, polygons, and circles with names of your choice in the URL field.

注意如何在UR l字段中用您选择的名称创建正方形、多边形和圆形。

9.For this step a human model with low number of polygons and a clip is necessary.

对于这一个步骤有多角形和修剪的低精度的一个人类的模型是必需的。

10.The artist used polygons (多边形) to create a digital representation of the landscape.

艺术家使用多边形polygons)来创建风景的数字表现。

11.Mathematicians classify polygons (多边形) based on the number of their sides.

数学家根据边的数量对多边形polygons)进行分类。

12.In computer graphics, polygons (多边形) are essential for modeling 3D objects.

在计算机图形学中,多边形polygons)对于建模3D对象至关重要。

13.The software allows users to manipulate polygons (多边形) to design custom shapes.

该软件允许用户操纵多边形polygons)以设计自定义形状。

14.In geometry, we often study different types of polygons (多边形) such as triangles, quadrilaterals, and pentagons.

在几何学中,我们经常研究不同类型的多边形polygons),例如三角形、四边形和五边形。

作文

Polygons are fascinating geometric shapes that play a crucial role in mathematics, art, and nature. A polygon (多边形) is defined as a two-dimensional shape that is made up of straight line segments connected end to end, forming a closed figure. The simplest form of a polygon (多边形) is a triangle, which has three sides. As we increase the number of sides, we encounter various types of polygons (多边形), such as quadrilaterals, pentagons, hexagons, and so on. Each of these shapes has its own unique properties and characteristics.In mathematics, polygons (多边形) are categorized based on the number of sides they have. For instance, a quadrilateral has four sides, a pentagon has five, and a hexagon has six. The study of polygons (多边形) is essential for understanding more complex geometric concepts, including symmetry, area, and perimeter. For example, the area of a regular polygon (多边形) can be calculated using specific formulas that depend on the number of sides and the length of each side. This illustrates how polygons (多边形) are not just abstract concepts, but they have practical applications in real-world scenarios.Moreover, polygons (多边形) are prevalent in art and architecture. Artists often use polygons (多边形) to create visually appealing patterns and designs. The famous artist Piet Mondrian utilized squares and rectangles, which are types of polygons (多边形), to develop his iconic abstract works. In architecture, structures are often designed using polygons (多边形) to maximize space and ensure stability. For instance, the design of a building may incorporate triangular supports, which are polygons (多边形) known for their strength and durability.In nature, polygons (多边形) can be observed in various forms. Honeycomb cells, for example, are hexagonal polygons (多边形) that bees construct to store honey and pollen. This natural occurrence demonstrates how polygons (多边形) can be efficient in terms of space utilization. Additionally, many crystals exhibit polygonal shapes, showcasing the beauty of geometric forms in the natural world.Furthermore, understanding polygons (多边形) can enhance our problem-solving skills. In computer graphics, polygons (多边形) are fundamental in rendering images and animations. By breaking down complex images into smaller polygons (多边形), computers can efficiently process and display visuals. This application highlights the importance of polygons (多边形) in technology and innovation.In conclusion, polygons (多边形) are more than mere geometric figures; they are integral to various fields, including mathematics, art, architecture, and nature. By studying polygons (多边形), we gain insights into the world around us and develop skills that are applicable in numerous disciplines. Whether we are creating art, designing buildings, or analyzing natural phenomena, the significance of polygons (多边形) cannot be overstated. Their presence enriches our understanding of geometry and shapes our interactions with the world.

多边形是迷人的几何形状,在数学、艺术和自然中扮演着至关重要的角色。多边形(polygon)被定义为由直线段连接端点形成的二维封闭图形。多边形(polygon)最简单的形式是三角形,它有三条边。随着边数的增加,我们会遇到各种类型的多边形(polygon),例如四边形、五边形、六边形等等。这些形状各自具有独特的属性和特征。在数学中,多边形(polygon)根据边的数量进行分类。例如,四边形有四条边,五边形有五条,六边形有六条。研究多边形(polygon)对于理解更复杂的几何概念至关重要,包括对称性、面积和周长。例如,规则多边形(polygon)的面积可以使用特定的公式计算,这些公式依赖于边的数量和每条边的长度。这说明了多边形(polygon)不仅仅是抽象概念,而在现实世界中有实际应用。此外,多边形(polygon)在艺术和建筑中也很常见。艺术家们经常使用多边形(polygon)来创造视觉上吸引人的图案和设计。著名艺术家皮特·蒙德里安利用正方形和矩形,即多边形(polygon)的一种,创作出他标志性的抽象作品。在建筑中,结构的设计通常采用多边形(polygon)来最大化空间并确保稳定性。例如,一座建筑的设计可能包含三角形支撑,这是一种以其强度和耐用性而闻名的多边形(polygon)。在自然界中,多边形(polygon)可以以各种形式观察到。例如,蜜蜂构建的蜂巢细胞是六边形的多边形(polygon),用于储存蜂蜜和花粉。这种自然现象展示了多边形(polygon)在空间利用方面的高效性。此外,许多晶体呈现多边形形状,展现了自然界中几何形态的美丽。此外,理解多边形(polygon)可以增强我们的解决问题能力。在计算机图形学中,多边形(polygon)是渲染图像和动画的基础。通过将复杂的图像分解为更小的多边形(polygon),计算机可以有效地处理和显示视觉内容。这一应用突显了多边形(polygon)在科技和创新中的重要性。总之,多边形(polygon)不仅仅是几何图形;它们是数学、艺术、建筑和自然等多个领域的重要组成部分。通过研究多边形(polygon),我们获得了对周围世界的深入了解,并发展出适用于众多学科的技能。无论我们是在创作艺术、设计建筑还是分析自然现象,多边形(polygon)的重要性都不容忽视。它们的存在丰富了我们对几何学的理解,并塑造了我们与世界的互动。