electric displacement vector
简明释义
电移矢量
英英释义
例句
1.In electrostatics, the electric displacement vector 电位移矢量 is used to describe how electric fields interact with materials.
在静电学中,电位移矢量 electric displacement vector 用于描述电场与材料的相互作用。
2.To find the total charge in a medium, one must integrate the electric displacement vector 电位移矢量 over the volume.
要找到介质中的总电荷,必须对体积内的电位移矢量 electric displacement vector 进行积分。
3.The relationship between the electric displacement vector 电位移矢量 and electric field can be expressed through Gauss's law.
电位移矢量electric displacement vector与电场之间的关系可以通过高斯定律来表达。
4.The electric displacement vector 电位移矢量 is particularly important in dielectric materials where polarization occurs.
在极化发生的介电材料中,电位移矢量 electric displacement vector 尤为重要。
5.When analyzing capacitors, the electric displacement vector 电位移矢量 helps in calculating stored energy.
在分析电容器时,电位移矢量 electric displacement vector 有助于计算储存的能量。
作文
In the field of electromagnetism, understanding the behavior of electric fields is crucial for various applications in engineering and physics. One fundamental concept that helps us analyze these fields is the electric displacement vector. The electric displacement vector (often denoted as D) is a vector quantity that accounts for both free and bound charges in a dielectric material. It plays a significant role in Gauss's law for dielectrics, which is essential for comprehending how electric fields behave in different materials.To grasp the significance of the electric displacement vector, we need to explore its definition and how it relates to other quantities in electromagnetism. The electric displacement vector is defined as:D = εE + P,where ε is the permittivity of the medium, E is the electric field intensity, and P is the polarization density of the dielectric material. This equation highlights that the electric displacement vector combines the effects of the electric field and the material's response to that field.One of the most important applications of the electric displacement vector is in the analysis of capacitors, particularly those that use dielectric materials. When a voltage is applied across a capacitor, the electric field establishes itself within the dielectric, causing polarization. The electric displacement vector helps us understand how much charge can be stored in the capacitor for a given voltage, considering the dielectric's properties.Moreover, the electric displacement vector simplifies the calculations involved in solving problems related to electric fields in materials with varying dielectric properties. For instance, when dealing with complex geometries or non-uniform materials, using the electric displacement vector allows engineers and physicists to apply Gauss's law more effectively. Instead of calculating the electric field directly, they can work with D, making the problem-solving process more manageable.Additionally, the electric displacement vector provides insights into the behavior of materials under external electric fields. In nonlinear dielectrics, where the relationship between D and E is not linear, the electric displacement vector becomes even more critical. Understanding how D varies with E can lead to advancements in material science, enabling the development of new materials with specific electrical properties.In summary, the electric displacement vector is an essential concept in electromagnetism that facilitates our understanding of electric fields in various materials. By incorporating the effects of free and bound charges, it allows for a more comprehensive analysis of how electric fields behave in dielectrics. Its applications extend from simple capacitor designs to complex material analyses, making it a vital tool for engineers and physicists alike. As technology continues to evolve, the importance of the electric displacement vector will only grow, further emphasizing the need for a solid grasp of this fundamental concept in electromagnetism.
在电磁学领域,理解电场的行为对于工程和物理学中的各种应用至关重要。帮助我们分析这些电场的一个基本概念是电位移矢量。电位移矢量(通常用D表示)是一个矢量量,它考虑了介质材料中的自由电荷和束缚电荷。它在介质的高斯定律中起着重要作用,这对于理解电场在不同材料中的行为至关重要。为了理解电位移矢量的重要性,我们需要探讨其定义以及它与电磁学中其他量的关系。电位移矢量定义为:D = εE + P,其中ε是介质的介电常数,E是电场强度,P是介质材料的极化密度。这个方程强调了电位移矢量结合了电场的影响和材料对该场的响应。电位移矢量最重要的应用之一是在电容器的分析中,特别是那些使用介电材料的电容器。当电压施加在电容器上时,电场在介质内建立,导致极化。电位移矢量帮助我们理解在给定电压下电容器可以储存多少电荷,考虑到介电材料的特性。此外,电位移矢量简化了涉及不同介电特性的材料中电场问题的计算。例如,在处理复杂几何形状或非均匀材料时,使用电位移矢量使工程师和物理学家能够更有效地应用高斯定律。与直接计算电场相比,他们可以处理D,使问题解决过程变得更加可管理。此外,电位移矢量提供了对材料在外部电场下行为的洞察。在非线性介电材料中,D与E之间的关系不是线性的,这使得电位移矢量变得更加关键。理解D如何随E变化可以推动材料科学的发展,使得开发具有特定电气特性的材料成为可能。总之,电位移矢量是电磁学中的一个基本概念,有助于我们理解各种材料中的电场。通过结合自由电荷和束缚电荷的影响,它使我们能够更全面地分析电场在介电材料中的行为。它的应用从简单的电容器设计扩展到复杂的材料分析,使其成为工程师和物理学家不可或缺的工具。随着技术的不断发展,电位移矢量的重要性将只会增加,进一步强调了掌握这一电磁学基本概念的必要性。
相关单词