superconductive

简明释义

[ˌsjuːpəkənˈdʌktɪv][ˌsʊpərkənˈdʌktɪv]

adj. 超电导的;超传导现象的

英英释义

Relating to a state of zero electrical resistance in certain materials when cooled to very low temperatures.

指某些材料在降至极低温度时表现出零电阻的状态。

单词用法

superconductive wire

超导电缆

superconductive magnets

超导磁体

superconductive technology

超导技术

superconductive applications

超导应用

achieve superconductive behavior

实现超导行为

exhibit superconductive properties

表现出超导特性

undergo superconductive transition

经历超导转变

utilize superconductive materials

利用超导材料

同义词

superconducting

超导的

Superconducting materials can carry electricity without resistance.

超导材料可以无阻力地传导电流。

conductive

导电的

Conductive materials are essential for electrical circuits.

导电材料对于电路是必不可少的。

反义词

resistive

电阻性的

The resistive nature of the material leads to energy loss.

材料的电阻特性导致能量损失。

non-superconductive

非超导的

Non-superconductive materials cannot carry current without resistance.

非超导材料无法在没有电阻的情况下传导电流。

例句

1.Superconductive power technology will bring the great technical breakthrough for the power industry, and also has the great significance in the application of electric power systems.

超导电力技术将为电力工业带来重大的技术突破,其在电力系统中的应用具有重大意义,而失超保护则是对超导电力系统安全运行的保障。

2.The superconductive electrical equipment is an important part of superconductive electric power system and the simulation analysis is one of the main means in equipment development.

超导电力设备是超导电力系统的重要组成部分,而仿真分析一直是设备开发的重要手段之一。

3.The prepared monocrystalline substrate plane has an Angle to crystalline 001 plane and superconductive film microbridge is etched in the inclined direction to 001 plane.

制作的单晶衬底平面应与晶体001面呈一夹角,沿着晶体001面倾斜的方向刻蚀成超导薄膜微桥。

4.Two kinds of microwave surface resistance Rs measurements of high Tc superconductive thin films are introduced in this paper, two-resonator method and the sapphire resonator method.

本文介绍了两种测试高温超导薄膜微波表面电阻的方法:双谐振器法和蓝宝石介质谐振器法。

5.It could be widely applied to superconductive magnetic levitation vehicle, superconductive bearing, flywheel energy-storage system, superconductive generator rotor, etc.

涉及一种用于在超导磁悬浮列车、超导轴承、飞轮储能系统、超导电机转子等方面具有潜在的实用性的材料的制备方法。

6.Functional-group-modified surface of titanium alloys was derived by self-assembly method in the high-magnetic gravity field simulated by superconductive magnet.

在利用梯度磁场模拟的重力场环境中,用自组装的方法在钛合金表面制备官能团修饰的改性表面。

7.In the field of energy transmission, superconductive (超导的) cables can significantly reduce power loss.

在能源传输领域,超导电缆可以显著减少能量损失。

8.The new material developed by the scientists is highly superconductive (超导的) at room temperature.

科学家们开发的新材料在室温下具有很高的超导性

9.The MRI machines utilize superconductive (超导的) magnets to produce high-resolution images.

MRI机器利用超导磁体产生高分辨率图像。

10.A superconductive (超导的) magnet can create a strong magnetic field with very low energy consumption.

超导磁体可以以非常低的能耗产生强大的磁场。

11.Researchers are exploring superconductive (超导的) materials for use in quantum computing.

研究人员正在探索用于量子计算的超导材料

作文

Superconductivity is a fascinating phenomenon that has captured the attention of scientists and engineers alike. This property, which allows certain materials to conduct electricity without any resistance when cooled to very low temperatures, has significant implications for various fields, including electronics, transportation, and energy storage. The term superconductive (超导的) refers to this unique ability of materials to achieve zero electrical resistance, leading to highly efficient energy transfer. The discovery of superconductivity dates back to 1911 when Dutch physicist Heike Kamerlingh Onnes observed that mercury exhibited no electrical resistance at a temperature of 4.2 Kelvin. Since then, researchers have identified numerous other materials that display superconductive (超导的) properties, including certain alloys and ceramics. One of the most exciting developments in this field has been the discovery of high-temperature superconductors, which can operate at temperatures significantly higher than traditional superconductors, making them more practical for real-world applications.The applications of superconductive (超导的) materials are vast and varied. In the realm of transportation, superconducting magnets are used in magnetic levitation (maglev) trains, which can travel at incredibly high speeds with minimal friction. This technology not only enhances travel efficiency but also reduces energy consumption, making it an environmentally friendly alternative to conventional rail systems.In the field of energy storage, superconductive (超导的) materials can be used to create powerful magnetic energy storage systems. These systems can store large amounts of energy and release it quickly when needed, providing stability to electrical grids and supporting renewable energy sources like wind and solar power. By integrating superconductive (超导的) technology into our energy infrastructure, we can move towards a more sustainable future.Moreover, superconductive (超导的) materials play a crucial role in medical technology, particularly in magnetic resonance imaging (MRI). MRI machines utilize superconducting magnets to generate strong magnetic fields, allowing for detailed imaging of the human body. The use of superconductive (超导的) materials in MRI technology not only improves image quality but also enhances the overall efficiency of the machines.Despite the tremendous potential of superconductive (超导的) materials, there are still challenges to overcome. The requirement for extremely low temperatures to achieve superconductivity poses significant technical and economic hurdles. Researchers are actively exploring new materials and methods to increase the operating temperature of superconductors, aiming for room-temperature superconductivity, which would revolutionize the industry.In conclusion, the study of superconductive (超导的) materials is a vibrant and rapidly evolving field with the potential to transform various sectors. From transportation to energy storage and medical technology, the applications of superconductivity are extensive and hold great promise for the future. As researchers continue to unlock the secrets of superconductive (超导的) materials, we may soon witness groundbreaking advancements that will enhance our everyday lives and contribute to a more sustainable world.

超导性是一种迷人的现象,吸引了科学家和工程师的注意。这种特性允许某些材料在冷却到非常低的温度时,无阻力地导电,对电子学、交通运输和能源存储等多个领域具有重要意义。术语superconductive(超导的)指的是材料实现零电阻的独特能力,从而导致高效的能量传输。超导性的发现可以追溯到1911年,当时荷兰物理学家海克·卡梅林·昂内斯观察到汞在4.2开尔文的温度下表现出没有电阻。从那时起,研究人员已经识别出许多其他显示出superconductive(超导的)特性的材料,包括某些合金和陶瓷。在这一领域最令人兴奋的发展之一是高温超导体的发现,这些材料可以在比传统超导体高得多的温度下工作,使它们在现实世界应用中更具实用性。superconductive(超导的)材料的应用广泛而多样。在交通运输领域,超导磁铁用于磁悬浮列车(maglev),这种列车可以以极高的速度行驶,摩擦力极小。这项技术不仅提高了旅行效率,还减少了能量消耗,使其成为传统铁路系统的环保替代方案。在能源存储领域,superconductive(超导的)材料可用于创建强大的磁能存储系统。这些系统可以存储大量能量,并在需要时迅速释放,为电网提供稳定性,并支持风能和太阳能等可再生能源。通过将superconductive(超导的)技术整合到我们的能源基础设施中,我们可以朝着更加可持续的未来迈进。此外,superconductive(超导的)材料在医疗技术中也发挥着至关重要的作用,特别是在磁共振成像(MRI)中。MRI机器利用超导磁铁生成强大的磁场,允许对人体进行详细成像。在MRI技术中使用superconductive(超导的)材料不仅提高了图像质量,还增强了机器的整体效率。尽管superconductive(超导的)材料具有巨大的潜力,但仍然存在需要克服的挑战。实现超导性所需的极低温度对技术和经济构成了显著障碍。研究人员正在积极探索新材料和方法,以提高超导体的工作温度,旨在实现室温超导,这将彻底改变该行业。总之,superconductive(超导的)材料的研究是一个充满活力和快速发展的领域,具有改变各个行业的潜力。从交通运输到能源存储和医疗技术,超导性的应用广泛,并对未来充满希望。随着研究人员继续揭示superconductive(超导的)材料的秘密,我们可能很快会见证突破性的进展,这将改善我们的日常生活并为更可持续的世界做出贡献。