double combination
简明释义
拖头和拖车相连
英英释义
A double combination refers to a pairing or grouping of two elements, items, or concepts that work together or are combined for a specific purpose. | 双重组合指的是两个元素、物品或概念的配对或组合,这些元素共同作用或为特定目的而结合。 |
例句
1.The double combination of hard work and dedication leads to success.
努力工作和奉献精神的双重组合会导致成功。
2.The double combination of yoga and meditation is great for mental health.
瑜伽和冥想的双重组合对心理健康非常有益。
3.Using a double combination of colors in your design can create a striking visual effect.
在设计中使用双重组合的颜色可以创造出引人注目的视觉效果。
4.In cooking, a double combination of spices can elevate the dish's flavor.
在烹饪中,双重组合的香料可以提升菜肴的风味。
5.A double combination of technology and creativity is essential in modern marketing.
在现代营销中,技术和创造力的双重组合是必不可少的。
作文
In the world of mathematics and statistics, the concept of a double combination plays a significant role in understanding complex problems. A double combination refers to the selection of two distinct groups from a larger set, where each group is chosen independently. This idea can be applied in various fields, including probability theory, combinatorial designs, and even in everyday decision-making processes.To illustrate the importance of a double combination, let’s consider an example involving a simple game. Imagine you have a bag containing five different colored balls: red, blue, green, yellow, and purple. If you want to select two balls, but you want to ensure that each ball comes from a different color group, you are essentially dealing with a double combination. In this case, the first selection might yield a red ball, and the second selection could result in a blue ball. The outcome of this selection process is influenced by the total number of colors available and the independence of each selection.The mathematical formulation of a double combination can be expressed using binomial coefficients. For instance, if we denote the total number of colors as n and the number of selections as r, the formula for a double combination can be represented as C(n, r) = n! / [r!(n - r)!]. This formula helps us determine how many different ways we can choose our groups, providing valuable insights into the possibilities available.Beyond mathematics, the concept of a double combination can also be seen in various real-life scenarios. Take, for example, a restaurant menu. When patrons are faced with the option of choosing a main dish and a side dish, they are effectively making a double combination choice. Each dish represents a different category, and the combination of these choices leads to a unique dining experience. This illustrates how the principles of double combinations extend beyond theoretical applications and into practical situations.Moreover, understanding double combinations can enhance strategic thinking. In business, for instance, companies often analyze customer preferences to create effective marketing strategies. By recognizing which products frequently pair together, businesses can optimize their offerings and promotions. This analytical approach relies on the concept of double combinations to maximize customer satisfaction and drive sales.In conclusion, the term double combination encompasses a fundamental principle that extends across various disciplines. Whether in mathematics, everyday decisions, or business strategies, recognizing the significance of double combinations can lead to better understanding and improved outcomes. As we continue to explore the complexities of our world, the ability to analyze and apply double combinations will undoubtedly remain a valuable skill for individuals and organizations alike.
在数学和统计学的世界中,双重组合的概念在理解复杂问题方面发挥着重要作用。双重组合指的是从一个较大的集合中选择两个不同的组,每个组都是独立选择的。这个想法可以应用于多个领域,包括概率论、组合设计,甚至日常决策过程。为了说明双重组合的重要性,让我们考虑一个涉及简单游戏的例子。想象一下,你有一个装有五种不同颜色球的袋子:红色、蓝色、绿色、黄色和紫色。如果你想选择两个球,但希望确保每个球来自不同的颜色组,那么你实际上是在处理一个双重组合。在这种情况下,第一个选择可能会得到一个红球,而第二个选择可能会得到一个蓝球。这种选择过程的结果受到可用颜色总数和每次选择独立性的影响。双重组合的数学公式可以使用二项式系数来表示。例如,如果我们将颜色的总数表示为n,选择的数量表示为r,那么双重组合的公式可以表示为C(n, r) = n! / [r!(n - r)!]。这个公式帮助我们确定选择组的不同方式,为可用的可能性提供了有价值的见解。除了数学,双重组合的概念也可以在各种现实生活场景中看到。以餐厅菜单为例。当顾客面临选择主菜和配菜的选项时,他们实际上是在进行双重组合选择。每道菜代表一个不同的类别,这些选择的组合导致独特的用餐体验。这说明了双重组合的原则如何超越理论应用,进入实际情况。此外,理解双重组合可以增强战略思维。在商业中,例如,公司经常分析客户偏好,以制定有效的营销策略。通过识别哪些产品经常搭配在一起,企业可以优化其产品和促销。这种分析方法依赖于双重组合的概念,以最大化客户满意度并推动销售。总之,术语双重组合包含了一个基本原则,这一原则跨越多个学科。无论是在数学、日常决策还是商业策略中,认识到双重组合的重要性都能带来更好的理解和改善的结果。随着我们继续探索这个复杂的世界,分析和应用双重组合的能力无疑将成为个人和组织的一项宝贵技能。
相关单词