dimensionless factor

简明释义

无量纲系数

英英释义

A dimensionless factor is a numerical quantity without any physical units, used to compare different systems or phenomena on a relative basis.

无量纲因子是一个没有任何物理单位的数值量,用于相对比较不同的系统或现象。

例句

1.When analyzing heat exchangers, the Nusselt number serves as a dimensionless factor 无量纲因子 indicating the convective heat transfer relative to conductive heat transfer.

在分析热交换器时,努塞尔数作为一个无量纲因子 dimensionless factor,表示对流热传递相对于导热传递的比率。

2.In engineering, the drag coefficient is often used as a dimensionless factor 无量纲因子 to compare the resistance of various shapes against fluid flow.

在工程中,阻力系数通常作为一个无量纲因子 dimensionless factor 来比较不同形状对流体流动的阻力。

3.The Froude number is another important dimensionless factor 无量纲因子 that compares inertial and gravitational forces in fluid flow.

弗劳德数是另一个重要的无量纲因子 dimensionless factor,用于比较流体流动中的惯性和重力作用。

4.The Mach number is a dimensionless factor 无量纲因子 that represents the ratio of the speed of an object to the speed of sound in the surrounding medium.

马赫数是一个无量纲因子 dimensionless factor,表示物体速度与周围介质中声速的比率。

5.The Reynolds number is a crucial dimensionless factor 无量纲因子 in fluid mechanics that helps predict flow patterns in different fluid flow situations.

雷诺数是流体力学中一个关键的无量纲因子 dimensionless factor,它有助于预测不同流体流动情况下的流动模式。

作文

In the field of science and engineering, the concept of a dimensionless factor plays a crucial role in simplifying complex equations and models. A dimensionless factor is a quantity that has no units associated with it, meaning it is a pure number. This characteristic allows researchers and engineers to compare different systems or phenomena without the complications introduced by varying units of measurement. For example, when analyzing fluid dynamics, the Reynolds number is a well-known dimensionless factor that helps predict flow patterns in different fluid flow situations. By using this dimensionless factor, scientists can determine whether the flow will be laminar or turbulent, which is vital for designing efficient systems in various applications, such as pipelines or aircraft wings.The importance of dimensionless factors extends beyond fluid dynamics; they are also prevalent in heat transfer, chemical reactions, and structural analysis. In heat transfer, the Nusselt number serves as another example of a dimensionless factor. It relates the convective heat transfer to conductive heat transfer, allowing engineers to analyze thermal performance without being bogged down by specific units. The use of dimensionless factors enables the development of generalized solutions that can be applied across a range of conditions and materials, thus streamlining the design process.Moreover, the application of dimensionless factors aids in the process of scaling models. In experimental studies, researchers often create small-scale models to simulate real-world scenarios. By applying dimensionless factors, they can ensure that the model accurately represents the behavior of the larger system. This practice is particularly useful in aerodynamics, where wind tunnel tests are conducted on scaled models of aircraft. The dimensionless factors derived from these tests allow engineers to make predictions about the full-sized aircraft's performance based on the results obtained from the smaller model.In addition to their practical applications, dimensionless factors also enhance our understanding of underlying principles in physics and engineering. They often reveal relationships between different physical quantities, shedding light on the fundamental behaviors of systems. For instance, the Mach number, another dimensionless factor, indicates the speed of an object relative to the speed of sound in the surrounding medium. This relationship is critical in aerospace engineering, as it influences design considerations for aircraft and spacecraft traveling at various speeds.In conclusion, the concept of a dimensionless factor is indispensable in various scientific and engineering disciplines. Its ability to provide a universal framework for comparison and analysis simplifies complex problems, enhances the accuracy of predictions, and facilitates the scaling of models. As technology advances and the need for precise and efficient designs increases, the significance of dimensionless factors will continue to grow, shaping the future of innovation in numerous fields. Understanding and utilizing dimensionless factors is essential for anyone involved in scientific research or engineering, as they form the backbone of many analytical techniques and methodologies.

在科学和工程领域,无量纲因子的概念在简化复杂方程和模型中起着至关重要的作用。无量纲因子是一个没有单位的量,意味着它是一个纯数字。这一特性使研究人员和工程师能够在不受不同测量单位影响的情况下比较不同的系统或现象。例如,在流体动力学分析中,雷诺数是一个众所周知的无量纲因子,它有助于预测不同流体流动情况下的流动模式。通过使用这个无量纲因子,科学家可以确定流动是层流还是湍流,这对于设计各种应用中高效的系统(如管道或飞机机翼)至关重要。无量纲因子的重要性不仅限于流体动力学;它们在热传递、化学反应和结构分析中也很常见。在热传递中,努塞尔数是另一个无量纲因子的例子。它将对流热传递与导热传递联系起来,使工程师能够在不受具体单位困扰的情况下分析热性能。使用无量纲因子使得开发适用于各种条件和材料的通用解决方案成为可能,从而简化了设计过程。此外,无量纲因子的应用有助于模型缩放的过程。在实验研究中,研究人员通常会创建小规模模型来模拟现实世界的场景。通过应用无量纲因子,他们可以确保模型准确地代表更大系统的行为。这种做法在空气动力学中尤为有用,其中风洞测试是在飞机的缩小模型上进行的。这些测试得出的无量纲因子使工程师能够根据从小模型获得的结果预测全尺寸飞机的性能。除了实际应用,无量纲因子还增强了我们对物理和工程基本原理的理解。它们通常揭示不同物理量之间的关系,阐明系统的基本行为。例如,马赫数,另一个无量纲因子,表示物体相对于周围介质中声速的速度。这种关系在航空航天工程中至关重要,因为它影响飞机和航天器在不同速度下的设计考虑。总之,无量纲因子的概念在各个科学和工程学科中是不可或缺的。它提供了一个普遍的比较和分析框架,简化了复杂问题,增强了预测的准确性,并促进了模型的缩放。随着技术的进步和对精确高效设计需求的增加,无量纲因子的重要性将继续增长,塑造许多领域创新的未来。理解和利用无量纲因子对于任何参与科学研究或工程的人来说都是至关重要的,因为它们构成了许多分析技术和方法论的基础。

相关单词

dimensionless

dimensionless详解:怎么读、什么意思、用法

factor

factor详解:怎么读、什么意思、用法