dimensionless coefficient

简明释义

无量纲系数

英英释义

A dimensionless coefficient is a numerical value that has no units and is used to describe the relationship between different physical quantities in a mathematical model or equation.

无量纲系数是一个没有单位的数值,用于描述数学模型或方程中不同物理量之间的关系。

例句

1.The Nusselt number is another important dimensionless coefficient 无量纲系数 used to characterize convective heat transfer.

努塞尔数是另一个重要的无量纲系数 dimensionless coefficient,用于表征对流热传递。

2.When analyzing the efficiency of a heat exchanger, engineers often refer to the Prandtl number as a relevant dimensionless coefficient 无量纲系数.

在分析热交换器的效率时,工程师通常会提到普朗特数作为一个相关的无量纲系数 dimensionless coefficient

3.In structural engineering, the load factor is a dimensionless coefficient 无量纲系数 that accounts for uncertainties in load-bearing capacity.

在结构工程中,荷载系数是一个无量纲系数 dimensionless coefficient,用于考虑承载能力的不确定性。

4.The drag coefficient is a dimensionless coefficient 无量纲系数 that quantifies the drag or resistance of an object in a fluid environment.

阻力系数是一个无量纲系数 dimensionless coefficient,量化物体在流体环境中的阻力或抗力。

5.In fluid dynamics, the Reynolds number is a key dimensionless coefficient 无量纲系数 that helps predict flow patterns in different fluid flow situations.

在流体动力学中,雷诺数是一个关键的无量纲系数 dimensionless coefficient,有助于预测不同流体流动情况中的流动模式。

作文

In the realm of physics and engineering, the concept of a dimensionless coefficient plays a pivotal role in simplifying complex equations and enhancing our understanding of various phenomena. A dimensionless coefficient is a numerical value that has no associated physical units, allowing for easier comparison and analysis across different systems. This characteristic makes it particularly useful in fields such as fluid dynamics, heat transfer, and material science, where various parameters need to be evaluated without the constraints of dimensionality.To illustrate the importance of dimensionless coefficients, consider the Reynolds number, which is a key parameter in fluid mechanics. The Reynolds number is defined as the ratio of inertial forces to viscous forces within a fluid flow. Mathematically, it is expressed as:Re = (ρ * v * L) / μ,where ρ is the fluid density, v is the flow velocity, L is a characteristic length, and μ is the dynamic viscosity. The resulting Reynolds number is a dimensionless coefficient that helps predict flow patterns in different fluid regimes, such as laminar or turbulent flow. By utilizing this dimensionless coefficient, engineers and scientists can make informed decisions regarding the design and optimization of various systems, from aircraft wings to pipeline networks.Another significant example of a dimensionless coefficient is the Nusselt number, which is used in heat transfer analysis. The Nusselt number represents the ratio of convective to conductive heat transfer across a boundary. It is defined as:Nu = (h * L) / k,where h is the convective heat transfer coefficient, L is a characteristic length, and k is the thermal conductivity of the fluid. Like the Reynolds number, the Nusselt number is a dimensionless coefficient that allows engineers to determine the efficiency of heat exchangers and other thermal systems. By analyzing the Nusselt number, one can assess how effectively heat is transferred in various scenarios, leading to better designs and energy-saving solutions.The significance of dimensionless coefficients extends beyond fluid mechanics and heat transfer; they also appear in various scientific disciplines, including chemical engineering and structural analysis. For instance, the Strouhal number, which characterizes oscillating flow mechanisms, is another dimensionless coefficient that provides insights into the behavior of objects in motion. Understanding these coefficients allows researchers to develop predictive models that are essential for innovation and technological advancement.Moreover, dimensionless coefficients facilitate communication among scientists and engineers by providing a common ground for discussing complex phenomena. Since these coefficients are independent of the specific units used, they enable comparisons between different systems and conditions without the confusion that may arise from varying units. This universality is crucial in collaborative research efforts where professionals from diverse backgrounds come together to solve intricate problems.In conclusion, dimensionless coefficients are indispensable tools in the fields of physics and engineering. They simplify complex relationships, enhance predictive capabilities, and foster collaboration among researchers. As technology continues to evolve, the application of dimensionless coefficients will undoubtedly expand, paving the way for innovative solutions to the challenges we face in our modern world. Embracing the significance of these coefficients will not only deepen our understanding of fundamental principles but also drive progress across various scientific and engineering disciplines.

在物理和工程领域,无量纲系数的概念在简化复杂方程和增强我们对各种现象的理解方面发挥着关键作用。无量纲系数是一个没有相关物理单位的数值,使得不同系统之间的比较和分析变得更加容易。这一特性使其在流体动力学、热传递和材料科学等领域特别有用,其中需要在不受维度限制的情况下评估各种参数。为了说明无量纲系数的重要性,考虑雷诺数,这是流体力学中的一个关键参数。雷诺数定义为流体流动中惯性力与粘性力的比率。数学上,它表示为:Re = (ρ * v * L) / μ,其中ρ是流体密度,v是流动速度,L是特征长度,μ是动态粘度。得到的雷诺数是一个无量纲系数,有助于预测不同流体状态下的流动模式,例如层流或湍流。通过利用这个无量纲系数,工程师和科学家可以就各种系统的设计和优化做出明智的决策,从飞机机翼到管道网络。另一个重要的无量纲系数示例是努塞尔数,它用于热传递分析。努塞尔数表示边界上对流与导热的比率。它定义为:Nu = (h * L) / k,其中h是对流换热系数,L是特征长度,k是流体的热导率。与雷诺数类似,努塞尔数是一个无量纲系数,允许工程师确定热交换器和其他热系统的效率。通过分析努塞尔数,可以评估在各种情况下热量的传递效率,从而导致更好的设计和节能解决方案。无量纲系数的重要性不仅限于流体力学和热传递;它们还出现在化学工程和结构分析等多个科学学科中。例如,斯特劳哈尔数,它描述了振荡流动机制,也是一个无量纲系数,提供了对运动物体行为的见解。理解这些系数使研究人员能够开发出预测模型,这对于创新和技术进步至关重要。此外,无量纲系数通过提供一个共同的基础来促进科学家和工程师之间的沟通,使他们能够讨论复杂的现象。由于这些系数与所使用的特定单位无关,它们使得在不同系统和条件之间进行比较成为可能,而不会因单位的变化而引起混淆。这种普遍性在合作研究努力中至关重要,因为来自不同背景的专业人员聚集在一起解决复杂问题。总之,无量纲系数是物理和工程领域不可或缺的工具。它们简化复杂关系,增强预测能力,并促进研究人员之间的合作。随着技术的不断发展,无量纲系数的应用无疑会扩展,为我们在现代世界面临的挑战提供创新解决方案。拥抱这些系数的重要性不仅将加深我们对基本原理的理解,还将推动各个科学和工程学科的进步。

相关单词

dimensionless

dimensionless详解:怎么读、什么意思、用法