dielectric hysteresis
简明释义
介质滞后
英英释义
例句
1.In high-frequency applications, dielectric hysteresis 介电滞后 can lead to energy losses that affect overall efficiency.
在高频应用中,介电滞后可能导致能量损失,从而影响整体效率。
2.The study of dielectric hysteresis 介电滞后 is crucial for understanding the behavior of capacitors under varying electric fields.
对介电滞后的研究对于理解电容器在变化电场下的行为至关重要。
3.Engineers must account for dielectric hysteresis 介电滞后 when designing materials for electronic devices.
工程师在为电子设备设计材料时必须考虑介电滞后。
4.The presence of dielectric hysteresis 介电滞后 can indicate material degradation over time.
存在介电滞后可能表明材料随时间的退化。
5.Researchers are exploring new polymers to minimize dielectric hysteresis 介电滞后 in capacitive sensors.
研究人员正在探索新型聚合物,以最小化电容传感器中的介电滞后。
作文
Dielectric materials are essential components in a wide range of electronic devices, from capacitors to insulators. One of the fascinating phenomena associated with dielectric materials is dielectric hysteresis (电介质滞后), which refers to the lag between the applied electric field and the resultant polarization in a dielectric material. This phenomenon is crucial for understanding how materials behave under varying electrical conditions and has significant implications for the performance and efficiency of electronic devices.To comprehend dielectric hysteresis (电介质滞后), it is important to first understand the basic principles of dielectric polarization. When an external electric field is applied to a dielectric material, the dipoles within the material align themselves with the field, resulting in polarization. As the electric field is increased, the polarization also increases. However, when the electric field is removed, the polarization does not return to zero immediately; instead, it follows a different path, creating a loop on a graph of polarization versus electric field. This loop is what we refer to as hysteresis.The presence of dielectric hysteresis (电介质滞后) can be attributed to several factors, including the material's molecular structure, the presence of defects, and the temperature of the environment. Different materials exhibit varying degrees of hysteresis, which can affect their performance in practical applications. For instance, ferroelectric materials, which are a subset of dielectric materials, often show pronounced hysteresis loops due to their unique properties. This characteristic is exploited in memory devices, where data is stored based on the polarization state of the material.In practical applications, dielectric hysteresis (电介质滞后) is a double-edged sword. On one hand, it can enhance the functionality of devices, such as in capacitors where energy storage is vital. On the other hand, excessive hysteresis can lead to energy loss in the form of heat, reducing the overall efficiency of electronic systems. Therefore, engineers must carefully select materials with appropriate hysteresis characteristics to optimize performance while minimizing losses.Moreover, understanding dielectric hysteresis (电介质滞后) is crucial in the design of high-frequency devices. At high frequencies, the time-dependent behavior of dielectric materials can significantly impact signal integrity and device performance. Consequently, researchers continually investigate novel materials and formulations that exhibit reduced hysteresis, aiming to create more efficient and reliable electronic components.In summary, dielectric hysteresis (电介质滞后) is a vital aspect of dielectric materials that influences their behavior in electrical applications. By understanding the mechanisms behind this phenomenon, scientists and engineers can develop better materials and devices that meet the demands of modern technology. As the field of electronics continues to evolve, the study of dielectric hysteresis (电介质滞后) will remain a key area of research, driving innovations in energy efficiency and device performance.
电介质材料是从电容器到绝缘体等各种电子设备的重要组成部分。与电介质材料相关的一个迷人现象是电介质滞后,它指的是施加的电场与电介质材料中产生的极化之间的滞后。这种现象对于理解材料在不同电气条件下的行为至关重要,并对电子设备的性能和效率具有重要影响。要理解电介质滞后,首先需要了解电介质极化的基本原理。当外部电场施加到电介质材料上时,材料内部的偶极子会与电场对齐,从而导致极化。随着电场的增加,极化也增加。然而,当电场被移除时,极化并不会立即返回零;相反,它沿着不同的路径返回,在极化与电场的图表上形成一个循环。这一循环就是我们所称的滞后。电介质滞后的存在可以归因于多个因素,包括材料的分子结构、缺陷的存在以及环境温度。不同的材料表现出不同程度的滞后,这可能会影响它们在实际应用中的性能。例如,铁电材料作为电介质材料的一种子集,通常显示出明显的滞后回路,这是由于它们独特的性质。这一特性被用于存储器设备中,其中数据基于材料的极化状态进行存储。在实际应用中,电介质滞后是一把双刃剑。一方面,它可以增强设备的功能,例如在电容器中,能量存储至关重要。另一方面,过度的滞后可能导致能量以热量的形式损失,从而降低电子系统的整体效率。因此,工程师必须仔细选择具有适当滞后特性的材料,以优化性能,同时最小化损失。此外,理解电介质滞后在高频设备的设计中至关重要。在高频率下,电介质材料的时间依赖行为可能会显著影响信号完整性和设备性能。因此,研究人员不断探索新型材料和配方,以展现出减少滞后的特性,旨在创造更高效、更可靠的电子元件。总之,电介质滞后是电介质材料的一个重要方面,影响其在电气应用中的行为。通过理解这一现象背后的机制,科学家和工程师可以开发出更好的材料和设备,以满足现代技术的需求。随着电子领域的不断发展,对电介质滞后的研究将仍然是一个关键研究领域,推动能源效率和设备性能的创新。
相关单词