dielectric fatigue
简明释义
介质疲劳
英英释义
例句
1.The electrical engineer explained that dielectric fatigue 介电疲劳 can lead to the failure of insulation materials over time.
电气工程师解释说,介电疲劳 dielectric fatigue 会导致绝缘材料随着时间的推移而失效。
2.Manufacturers need to consider dielectric fatigue 介电疲劳 when designing long-lasting electrical components.
制造商在设计耐用电气组件时需要考虑介电疲劳 dielectric fatigue。
3.In high-voltage applications, monitoring dielectric fatigue 介电疲劳 is crucial for ensuring safety and reliability.
在高压应用中,监测介电疲劳 dielectric fatigue 对于确保安全性和可靠性至关重要。
4.The research focused on the effects of temperature on dielectric fatigue 介电疲劳 in polymer insulators.
这项研究集中在温度对聚合物绝缘体中介电疲劳 dielectric fatigue 影响的研究上。
5.The testing lab reported signs of dielectric fatigue 介电疲劳 in the samples after prolonged exposure to voltage.
测试实验室报告称样品在长时间暴露于电压后出现了介电疲劳 dielectric fatigue 的迹象。
作文
Understanding the concept of dielectric fatigue is essential for anyone involved in electrical engineering or materials science. In essence, dielectric fatigue refers to the degradation of insulating materials when subjected to repeated electrical stress. This phenomenon can lead to failures in electrical systems, which can be costly and dangerous. The study of dielectric fatigue has become increasingly important as technology advances and the demand for reliable electrical components grows.To grasp the implications of dielectric fatigue, it is crucial to first understand what dielectric materials are. Dielectrics are insulators that can be polarized by an electric field, allowing them to store electrical energy. Common examples include ceramics, plastics, and glass. These materials are widely used in capacitors, transformers, and other electrical devices. However, when these materials are repeatedly exposed to high voltage or fluctuating electric fields, they can experience dielectric fatigue, leading to a decline in their insulating properties.The mechanisms behind dielectric fatigue can vary depending on the material and the conditions under which it is used. For instance, one of the primary causes of dielectric fatigue is the generation of micro-discharges within the material. These discharges can create tiny cracks or voids in the dielectric, gradually compromising its integrity. Over time, this degradation can result in partial discharge activity, which further accelerates the deterioration process.Another factor contributing to dielectric fatigue is thermal effects. As electrical energy is dissipated as heat within the dielectric material, it can lead to thermal expansion and contraction. This cyclic thermal stress can exacerbate the physical degradation of the material, making it more susceptible to breakdown. Consequently, understanding the thermal and electrical properties of dielectrics is critical for predicting their performance and longevity.Preventing dielectric fatigue involves careful selection of materials and design considerations. Engineers must take into account the operating conditions that the dielectric will face, such as voltage levels, frequency of use, and environmental factors like temperature and humidity. By choosing materials with higher resistance to dielectric fatigue, engineers can enhance the reliability of electrical systems.Moreover, advancements in material science are paving the way for the development of new dielectrics that exhibit improved resistance to dielectric fatigue. Research into nanocomposites and other innovative materials shows promise in creating dielectrics that can withstand higher stress without degrading. These advancements not only improve the performance of electrical devices but also contribute to the overall safety and efficiency of electrical systems.In conclusion, dielectric fatigue is a critical issue in the field of electrical engineering that can have significant implications for the reliability and safety of electrical components. Understanding the causes and effects of dielectric fatigue allows engineers and scientists to develop better materials and designs that can withstand the challenges of modern electrical applications. As technology continues to evolve, addressing the challenges of dielectric fatigue will remain a priority to ensure the functionality and longevity of electrical systems.
理解介电疲劳的概念对于任何参与电气工程或材料科学的人来说都是至关重要的。基本上,介电疲劳是指绝缘材料在反复电气应力作用下的退化。这种现象可能导致电气系统的故障,这可能是昂贵且危险的。随着技术的进步和对可靠电气组件需求的增加,介电疲劳的研究变得越来越重要。要理解介电疲劳的影响,首先必须了解什么是介电材料。介电体是可以被电场极化的绝缘体,使其能够存储电能。常见的例子包括陶瓷、塑料和玻璃。这些材料广泛用于电容器、变压器和其他电气设备。然而,当这些材料反复暴露于高电压或波动电场时,它们可能会经历介电疲劳,导致其绝缘性能下降。导致介电疲劳的机制可能因材料和使用条件而异。例如,介电疲劳的主要原因之一是材料内部微放电的产生。这些放电可能会在介电材料中形成微小的裂纹或空隙,逐渐损害其完整性。随着时间的推移,这种退化可能导致局部放电活动,从而进一步加速恶化过程。另一个导致介电疲劳的因素是热效应。当电能以热量的形式在介电材料中耗散时,会导致热膨胀和收缩。这种循环热应力可能加剧材料的物理退化,使其更容易发生击穿。因此,了解介电体的热和电性能对于预测其性能和寿命至关重要。防止介电疲劳涉及材料的仔细选择和设计考虑。工程师必须考虑介电体将面临的工作条件,例如电压水平、使用频率以及温度和湿度等环境因素。通过选择对介电疲劳具有更高抵抗力的材料,工程师可以提高电气系统的可靠性。此外,材料科学的进步为开发对介电疲劳表现出改善抵抗力的新型介电体铺平了道路。对纳米复合材料和其他创新材料的研究显示出创造能够承受更高应力而不退化的介电体的前景。这些进展不仅提高了电气设备的性能,还促进了电气系统的整体安全性和效率。总之,介电疲劳是电气工程领域中的一个关键问题,可能对电气组件的可靠性和安全性产生重大影响。理解介电疲劳的原因和影响使工程师和科学家能够开发出更好的材料和设计,以承受现代电气应用的挑战。随着技术的不断发展,解决介电疲劳问题将仍然是确保电气系统功能和寿命的优先事项。
相关单词