tetrameric
简明释义
英[ˌtɛtrəˈmɛrɪk]美[ˌtɛtrəˈmɛrɪk]
adj. 四聚物的
英英释义
Relating to or consisting of a tetramer, which is a molecular structure formed by the assembly of four subunits. | 与四聚体相关或由四个亚单位组装而成的分子结构。 |
单词用法
同义词
四聚体的 | The tetrameric form of the protein is crucial for its function. | 蛋白质的四聚体形式对其功能至关重要。 | |
四聚物 | Quaternary structures are essential in understanding protein interactions. | 四级结构在理解蛋白质相互作用中是必不可少的。 |
反义词
单体的 | Monomeric proteins can form larger complexes through polymerization. | 单体蛋白可以通过聚合形成更大的复合物。 | |
二聚体的 | Dimeric forms of the enzyme are often more stable than their monomeric counterparts. | 酶的二聚体形式通常比其单体形式更稳定。 |
例句
1.Streptavidin is a 53,000 dalton tetrameric protein purified from the bacterium Streptomyces avidinii (3). Each subunit binds to biotin with extremely high affinity.
链霉素亲和素是从链霉亲生物素蛋白中分离出来的53,000道尔顿的同源四聚体(3),每一个链霉素亲和素的亚基可以与维生素形成高亲和力非共价结合。
2.Streptavidin is a 53,000 dalton tetrameric protein purified from the bacterium Streptomyces avidinii (3). Each subunit binds to biotin with extremely high affinity.
链霉素亲和素是从链霉亲生物素蛋白中分离出来的53,000道尔顿的同源四聚体(3),每一个链霉素亲和素的亚基可以与维生素形成高亲和力非共价结合。
3.Besides, the spacer carbon chain length of the tetrameric quaternary ammonium ion also displays important influence on the performance of the system.
另外,季铵离子头基之间的连接链长度对体系的性能也有重要的影响。
4.In our study, we observed that the tetrameric 四聚体的 complex exhibited higher enzymatic activity than its monomeric counterpart.
在我们的研究中,我们观察到四聚体的复合物的酶活性高于其单体对应物。
5.The tetrameric 四聚体的 arrangement of subunits allows for cooperative binding in hemoglobin.
亚基的四聚体的排列使得血红蛋白中的协同结合成为可能。
6.The protein forms a stable tetrameric 四聚体的 structure that is essential for its function.
该蛋白质形成一个稳定的四聚体的结构,这对其功能至关重要。
7.Researchers are investigating how tetrameric 四聚体的 proteins can be used in drug delivery systems.
研究人员正在调查如何利用四聚体的蛋白质用于药物输送系统。
8.The tetrameric 四聚体的 structure of the enzyme is crucial for its catalytic function.
该酶的四聚体的结构对其催化功能至关重要。
作文
In the world of biochemistry, the term tetrameric refers to a molecular structure that is composed of four subunits or monomers. These subunits can be identical or different, and their arrangement plays a crucial role in the function of the protein or complex they form. Understanding the significance of tetrameric structures is essential for researchers and students alike, as it provides insight into how proteins operate within biological systems. Proteins are fundamental to all living organisms, serving various functions such as catalyzing biochemical reactions, providing structural support, and facilitating communication between cells. The formation of a tetrameric protein can lead to enhanced stability and functionality compared to its monomeric counterparts. For example, hemoglobin, which is responsible for transporting oxygen in the blood, is a well-known tetrameric protein. It consists of four polypeptide chains, enabling it to bind oxygen more efficiently than if it were made up of a single chain.The process of forming a tetrameric structure often involves specific interactions among the subunits, such as hydrogen bonds, ionic interactions, and hydrophobic effects. These interactions ensure that the subunits come together in a way that allows the protein to achieve its functional conformation. This is particularly important in biological processes where the precise shape of a protein determines its ability to interact with other molecules, such as enzymes binding to substrates or antibodies recognizing antigens.Moreover, the study of tetrameric proteins can reveal important information about genetic regulation and disease mechanisms. Mutations in genes encoding tetrameric proteins can lead to dysfunctional protein complexes, resulting in various health issues. For instance, certain types of cancer have been linked to mutations in tetrameric proteins involved in cell cycle regulation. By understanding how these proteins work and how they can be affected by mutations, scientists can develop targeted therapies and treatments.In addition to their biological significance, tetrameric structures are also of great interest in the field of biotechnology. Researchers are exploring ways to engineer tetrameric proteins for industrial applications, such as creating more efficient enzymes for biofuels or developing novel therapeutic agents. The ability to manipulate these structures opens up new avenues for innovation in medicine and sustainable technology.In conclusion, the concept of tetrameric structures is a fundamental aspect of biochemistry that underscores the complexity and elegance of protein function. By studying these multi-subunit complexes, we gain valuable insights into the mechanisms of life at the molecular level. Whether through understanding their role in health and disease or harnessing their potential in biotechnology, the importance of tetrameric proteins cannot be overstated. As research continues to advance, the knowledge surrounding tetrameric structures will undoubtedly contribute to significant breakthroughs in science and medicine.
在生物化学的世界中,术语tetrameric指的是由四个亚单位或单体组成的分子结构。这些亚单位可以是相同的或不同的,它们的排列在它们形成的蛋白质或复合物的功能中起着至关重要的作用。理解tetrameric结构的重要性对研究人员和学生来说都是必不可少的,因为它提供了关于蛋白质如何在生物系统中运作的深入见解。蛋白质是所有生物体的基础,具有催化生化反应、提供结构支持和促进细胞间通信等多种功能。形成tetrameric蛋白质可以导致其稳定性和功能性增强,相比于其单体对应物。例如,血红蛋白负责在血液中运输氧气,是一种众所周知的tetrameric蛋白。它由四条多肽链组成,使其能够比单链更有效地结合氧气。形成tetrameric结构的过程通常涉及亚单位之间的特定相互作用,例如氢键、离子相互作用和疏水效应。这些相互作用确保亚单位以允许蛋白质达到其功能构象的方式结合在一起。这在生物过程中尤为重要,因为蛋白质的精确形状决定了其与其他分子的相互作用能力,例如酶与底物的结合或抗体对抗原的识别。此外,对tetrameric蛋白质的研究可以揭示关于基因调控和疾病机制的重要信息。编码tetrameric蛋白质的基因中的突变可能导致功能失常的蛋白质复合物,从而导致各种健康问题。例如,某些类型的癌症与细胞周期调控中涉及的tetrameric蛋白质的突变有关。通过了解这些蛋白质的工作原理以及它们如何受到突变的影响,科学家可以开发出靶向疗法和治疗方案。除了其生物学意义外,tetrameric结构在生物技术领域也引起了极大的兴趣。研究人员正在探索工程化tetrameric蛋白质的方法,以用于工业应用,例如创造更高效的生物燃料酶或开发新型治疗剂。操纵这些结构的能力为医学和可持续技术的创新开辟了新的途径。总之,tetrameric结构的概念是生物化学的一个基本方面,强调了蛋白质功能的复杂性和优雅性。通过研究这些多亚单位复合物,我们获得了关于生命机制在分子水平上有价值的见解。无论是通过理解它们在健康和疾病中的作用,还是利用它们在生物技术中的潜力,tetrameric蛋白质的重要性都不容小觑。随着研究的不断推进,围绕tetrameric结构的知识无疑将为科学和医学的重大突破做出贡献。