endergonic
简明释义
英[ˌendɜːˈɡɒnɪk]美[ˌendərˈɡɑːnɪk]
adj. [生化] 吸能的
英英释义
Referring to a type of chemical reaction that absorbs energy from its surroundings, resulting in a net gain of energy. | 指一种化学反应,从周围环境中吸收能量,导致能量的净增加。 |
单词用法
吸能和放能反应 | |
吸能能量变化 | |
反应的吸能性质 | |
吸能途径 | |
吸能平衡 | |
吸能热力学 |
同义词
非自发的 | 内能反应需要输入能量才能进行。 |
反义词
放能反应 | The combustion of fuels is an exergonic reaction that releases energy. | 燃料的燃烧是一个放能反应,释放能量。 | |
放热反应 | Exothermic reactions are often used in heat packs to provide warmth. | 放热反应常用于热包中以提供温暖。 |
例句
1.Whereas cellular respiration is highly exergonic and releases energy, photosynthesis requires energy and is highly endergonic.
但是细胞呼吸作用高放能并释放能量,光合作用高吸能并需要能量。
2.Thermodynamic considerations indicate that the reduction of phosphate to phosphine is endergonic.
热力学分析,磷酸盐还原成磷化氢是一种吸能反应。
3.Whereas cellular respiration is highly exergonic and releases energy, photosynthesis requires energy and is highly endergonic.
但是细胞呼吸作用高放能并释放能量,光合作用高吸能并需要能量。
4.The formation of peptide bonds during protein synthesis is an endergonic 吸能反应 that requires energy.
在蛋白质合成过程中,肽键的形成是一个需要能量的endergonic 吸能反应。
5.In cellular respiration, the formation of ATP from ADP is an endergonic 吸能反应 that stores energy for the cell's use.
在细胞呼吸中,ATP从ADP的形成是一个endergonic 吸能反应,为细胞储存能量。
6.The process of photosynthesis is an example of an endergonic 吸能反应 that requires sunlight to convert carbon dioxide and water into glucose.
光合作用是一个例子,它是一个endergonic 吸能反应,需要阳光将二氧化碳和水转化为葡萄糖。
7.During muscle contraction, the energy required is derived from endergonic 吸能反应 in the form of ATP hydrolysis.
在肌肉收缩过程中,所需的能量来自于ATP水解中的endergonic 吸能反应。
8.The synthesis of complex molecules from simpler ones often involves endergonic 吸能反应 that require energy input.
从简单分子合成复杂分子通常涉及需要能量输入的endergonic 吸能反应。
作文
In the realm of chemistry, reactions can be classified into two main categories: exergonic and endergonic (吸能的). While exergonic reactions release energy, endergonic reactions require an input of energy to proceed. This fundamental distinction is crucial for understanding various biochemical processes that occur within living organisms. For instance, photosynthesis is a classic example of an endergonic reaction, where plants absorb sunlight to convert carbon dioxide and water into glucose and oxygen. The energy from sunlight is essential for driving this process, making it a perfect illustration of how endergonic reactions function.The concept of endergonic reactions extends beyond just photosynthesis. In cellular respiration, although it primarily involves exergonic reactions that release energy, there are also endergonic steps involved in synthesizing ATP (adenosine triphosphate), which is the energy currency of the cell. The formation of ATP from ADP (adenosine diphosphate) and inorganic phosphate is endergonic, as it requires energy input, usually derived from the breakdown of glucose during cellular respiration.Understanding endergonic reactions is vital for numerous applications in biochemistry and molecular biology. For example, researchers studying metabolic pathways must consider how energy is transferred and transformed within cells. Enzymes play a significant role in facilitating endergonic reactions by lowering the activation energy required for the reaction to occur. This means that even though these reactions are energetically unfavorable, they can still proceed at a reasonable rate under biological conditions, thanks to the action of enzymes.Moreover, the principles of endergonic reactions are not limited to biological systems. In industrial chemistry, many processes involve endergonic reactions that require careful management of energy inputs. For instance, the production of ammonia through the Haber process is an endergonic reaction that necessitates high temperatures and pressures to drive the reaction forward. Understanding the energy dynamics of such reactions is crucial for optimizing yields and reducing costs in chemical manufacturing.In summary, the term endergonic (吸能的) refers to reactions that require energy input to proceed. These reactions are integral to various biological and industrial processes, illustrating the importance of energy transformation in both nature and technology. Whether in the context of photosynthesis, cellular respiration, or chemical synthesis, recognizing the role of endergonic reactions helps us appreciate the complexity of life and the intricate balance of energy that sustains it. As we continue to explore the fascinating world of chemistry, the understanding of endergonic reactions will undoubtedly remain a key component of our scientific knowledge.
在化学领域,反应可以分为两大类:放能反应和endergonic(吸能的)反应。放能反应释放能量,而endergonic反应则需要输入能量才能进行。这一基本区别对于理解生物体内发生的各种生化过程至关重要。例如,光合作用是一个经典的endergonic反应的例子,植物吸收阳光将二氧化碳和水转化为葡萄糖和氧气。阳光的能量对于推动这一过程至关重要,使其成为endergonic反应如何运作的完美说明。Endergonic反应的概念不仅限于光合作用。在细胞呼吸中,尽管其主要涉及释放能量的放能反应,但合成ATP(腺苷三磷酸)的步骤也包含endergonic反应,ATP是细胞的能量货币。ATP由ADP(腺苷二磷酸)和无机磷酸盐形成的过程是endergonic的,因为它需要能量输入,通常来自于细胞呼吸过程中葡萄糖的分解。理解endergonic反应对于生物化学和分子生物学的众多应用至关重要。例如,研究代谢途径的研究人员必须考虑能量如何在细胞内转移和转化。酶在促进endergonic反应方面发挥着重要作用,降低了反应所需的活化能。这意味着尽管这些反应在能量上是不利的,但由于酶的作用,它们仍然可以在生物条件下以合理的速率进行。此外,endergonic反应的原理并不局限于生物系统。在工业化学中,许多过程涉及需要仔细管理能量输入的endergonic反应。例如,通过哈柏法生产氨是一种endergonic反应,需要高温和高压来推动反应向前发展。理解这些反应的能量动态对于优化产量和降低化学制造成本至关重要。总之,术语endergonic(吸能的)指的是需要能量输入才能进行的反应。这些反应是各种生物和工业过程的核心,说明了能量转化在自然和技术中的重要性。无论是在光合作用、细胞呼吸还是化学合成的背景下,认识到endergonic反应的作用有助于我们欣赏生命的复杂性以及维持生命所需的能量微妙平衡。随着我们继续探索化学的迷人世界,对endergonic反应的理解无疑将继续成为我们科学知识的关键组成部分。