decimal system

简明释义

十进位制

英英释义

A numeral system based on powers of ten, where each digit's position represents a power of ten, commonly used in mathematics and everyday counting.

一种基于十的幂的数字系统,每个数字的位置代表一个十的幂,通常用于数学和日常计数。

例句

1.In mathematics class, we learned that the decimal system 十进制系统 is based on powers of ten.

在数学课上,我们了解到 decimal system 十进制系统 是基于十的幂。

2.The decimal system 十进制系统 is used in most countries for everyday counting.

大多数国家在日常计数中使用 decimal system 十进制系统

3.In finance, the decimal system 十进制系统 is crucial for accurate monetary transactions.

在金融中,decimal system 十进制系统 对于准确的货币交易至关重要。

4.The decimal system 十进制系统 simplifies calculations compared to other numerical systems.

与其他数字系统相比,decimal system 十进制系统 简化了计算。

5.When programming, understanding the decimal system 十进制系统 helps in converting to binary.

在编程时,理解 decimal system 十进制系统 有助于转换为二进制。

作文

The decimal system, also known as the base-10 system, is a numerical system that uses ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. This system is the most widely used number system in the world today, and it forms the basis of our everyday counting and arithmetic. The decimal system is significant not only because of its practicality but also due to its historical development and influence on mathematics and science.Historically, the decimal system has roots that can be traced back to ancient civilizations. The Egyptians, for instance, utilized a form of this system for their calculations. However, it was the Indian mathematicians who refined the system, introducing the concept of zero as a number, which is crucial for the decimal system. This innovation allowed for more complex calculations and laid the groundwork for modern mathematics.One of the most interesting aspects of the decimal system is its positional notation. In this system, the position of a digit determines its value. For example, in the number 345, the digit 3 represents three hundred, the digit 4 represents forty, and the digit 5 represents five. This positional aspect makes calculations easier and more efficient compared to other systems, such as the Roman numeral system, where values are not positionally based.In daily life, we constantly use the decimal system without even thinking about it. Whether we are shopping, cooking, or budgeting, we rely on this system to quantify and manage our resources. For example, when we see a price tag that reads $25.99, we instantly understand that it means twenty-five dollars and ninety-nine cents. This ease of understanding is one of the reasons why the decimal system is so prevalent.Moreover, the decimal system plays a vital role in education. Mathematics curricula around the world are primarily built on this system. Children learn to count, add, subtract, multiply, and divide using the decimal system. This foundational knowledge is essential for developing more advanced mathematical skills, as well as for understanding concepts in science and engineering.However, it is important to note that while the decimal system is dominant, there are other numeral systems that are equally fascinating. For example, the binary system (base-2) is used in computer science and digital electronics. Understanding these alternative systems can provide deeper insights into how numbers work and how they can be manipulated in different contexts.In conclusion, the decimal system is a fundamental component of our numerical understanding. Its historical significance, practical applications, and role in education highlight its importance in our lives. As we continue to advance technologically and mathematically, the decimal system will undoubtedly remain a cornerstone of our numerical framework. Embracing this system allows us to engage with the world around us more effectively, whether in simple daily tasks or complex scientific endeavors. Therefore, mastering the decimal system is not just an academic exercise; it is a vital skill that enhances our ability to navigate and understand the complexities of life.

十进制系统,也称为基数10系统,是一种数字系统,使用十个数字:0、1、2、3、4、5、6、7、8和9。这个系统是当今世界上使用最广泛的数字系统,它构成了我们日常计数和算术的基础。十进制系统的重要性不仅在于其实用性,还在于其历史发展及对数学和科学的影响。从历史上看,十进制系统的根源可以追溯到古代文明。例如,埃及人使用这种系统的一种形式进行计算。然而,正是印度数学家完善了这一系统,引入了零作为数字的概念,这对于十进制系统至关重要。这一创新使得更复杂的计算成为可能,并为现代数学奠定了基础。十进制系统中最有趣的一个方面是其位置记数法。在这个系统中,数字的位置决定其值。例如,在数字345中,数字3代表三百,数字4代表四十,数字5代表五。这种位置特性使得与其他系统(如罗马数字系统)相比,计算变得更加简单和高效,因为其他系统的值不是基于位置的。在日常生活中,我们不断地使用十进制系统,而不需要思考。无论是在购物、烹饪还是预算时,我们依赖这个系统来量化和管理我们的资源。例如,当我们看到价格标签上写着$25.99时,我们立即理解为二十五美元九十九美分。这种理解的便利性是十进制系统如此普遍的原因之一。此外,十进制系统在教育中也扮演着重要角色。世界各地的数学课程主要建立在这个系统上。孩子们学习用十进制系统进行计数、加法、减法、乘法和除法。这种基础知识对发展更高级的数学技能以及理解科学和工程中的概念至关重要。然而,重要的是要注意,尽管十进制系统占主导地位,但还有其他同样迷人的数字系统。例如,二进制系统(基数2)在计算机科学和数字电子学中使用。理解这些替代系统可以提供更深入的洞察力,帮助我们了解数字是如何工作的,以及它们在不同上下文中如何被操纵。总之,十进制系统是我们数字理解的基本组成部分。它的历史意义、实际应用和在教育中的作用突显了它在我们生活中的重要性。随着我们在技术和数学上的不断进步,十进制系统无疑将继续作为我们数字框架的基石。接受这个系统使我们能够更有效地与周围的世界互动,无论是在简单的日常任务中还是在复杂的科学工作中。因此,掌握十进制系统不仅仅是学术练习;这是增强我们驾驭和理解生活复杂性的关键技能。