decimal binary
简明释义
十—二进制
英英释义
Decimal binary refers to a system of representing numbers that combines both decimal (base 10) and binary (base 2) numeral systems. | 十进制二进制是指一种表示数字的系统,结合了十进制(基数10)和二进制(基数2)数值系统。 |
例句
1.The decimal binary 十进制二进制 system is used extensively in digital electronics.
在数字电子学中,decimal binary 十进制二进制 系统被广泛使用。
2.When performing calculations, understanding decimal binary 十进制二进制 values helps in debugging.
在进行计算时,理解decimal binary 十进制二进制 值有助于调试。
3.Many programming languages provide functions to handle decimal binary 十进制二进制 conversions easily.
许多编程语言提供函数以便轻松处理decimal binary 十进制二进制 转换。
4.To understand how computers store data, one must grasp the concept of decimal binary 十进制二进制 representation.
要理解计算机如何存储数据,必须掌握decimal binary 十进制二进制 表示的概念。
5.In computer science, converting a decimal binary 十进制二进制 number to binary is essential for data processing.
在计算机科学中,将一个decimal binary 十进制二进制 数字转换为二进制对于数据处理至关重要。
作文
In the realm of mathematics and computer science, understanding the relationship between different number systems is crucial. One of the most fundamental conversions is between the decimal system and the binary system. The term decimal binary refers to the process of converting numbers from the decimal system, which is base ten, to the binary system, which is base two. This conversion is essential for computers, as they operate using binary code. The decimal system uses ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Each position in a decimal number represents a power of ten. For example, the number 345 in decimal can be broken down into 3 × 10² + 4 × 10¹ + 5 × 10⁰. In contrast, the binary system only uses two digits: 0 and 1. Each position in a binary number represents a power of two. Therefore, the binary equivalent of the decimal number 345 must be calculated by determining how many powers of two fit into it. To convert a decimal number to binary, one can use the method of successive division by two. For instance, if we take the decimal number 13, we would divide it by 2, recording the quotient and the remainder at each step. The process would look like this: 13 divided by 2 equals 6 with a remainder of 1; 6 divided by 2 equals 3 with a remainder of 0; 3 divided by 2 equals 1 with a remainder of 1; and finally, 1 divided by 2 equals 0 with a remainder of 1. Once we reach a quotient of 0, we can read the remainders backward to find the binary representation, which is 1101. Thus, the decimal binary conversion of 13 is 1101 in binary. This knowledge is not just academically interesting but also practically vital in programming and digital electronics. Every operation performed by a computer is based on binary logic. Understanding how to convert between decimal binary forms allows programmers to manipulate data more effectively and understand how their code interacts with machine-level operations. Additionally, various programming languages and tools often require developers to work directly with binary data, making this skill indispensable. Furthermore, the concept of decimal binary extends beyond simple conversion. It also includes understanding how binary arithmetic works, including addition, subtraction, multiplication, and division. These operations follow specific rules that differ from decimal arithmetic due to the limited digit set. For example, adding two binary digits follows similar principles to decimal addition but carries over when the sum exceeds 1 instead of 9. In conclusion, mastering the process of converting between the decimal system and the binary system through decimal binary conversion is essential for anyone involved in mathematics, computing, or digital technology. It enables a deeper understanding of how numbers are represented and manipulated in the digital world. As technology continues to evolve, the importance of grasping these fundamental concepts will only grow, making the study of decimal binary conversion a valuable pursuit for future generations.
在数学和计算机科学的领域,理解不同数字系统之间的关系至关重要。最基本的转换之一是十进制系统与二进制系统之间的转换。术语decimal binary指的是将十进制系统(基数为十)的数字转换为二进制系统(基数为二)的过程。这种转换对计算机而言至关重要,因为它们使用二进制代码进行操作。十进制系统使用十个数字:0、1、2、3、4、5、6、7、8和9。十进制数字中的每个位置代表十的幂。例如,十进制数字345可以分解为3 × 10² + 4 × 10¹ + 5 × 10⁰。相比之下,二进制系统仅使用两个数字:0和1。二进制数字中的每个位置代表二的幂。因此,十进制数字345的二进制等价物必须通过确定有多少个二的幂适合于其来计算。要将十进制数字转换为二进制,可以使用连续除以二的方法。例如,如果我们取十进制数字13,我们将其除以2,并在每一步记录商和余数。这个过程看起来是这样的:13除以2等于6,余数为1;6除以2等于3,余数为0;3除以2等于1,余数为1;最后,1除以2等于0,余数为1。一旦我们达到商为0,我们就可以反向读取余数,以找到二进制表示,即1101。因此,13的decimal binary转换为二进制是1101。这一知识不仅在学术上有趣,而且在编程和数字电子学中也具有实际重要性。计算机执行的每个操作都基于二进制逻辑。理解如何在decimal binary形式之间转换使程序员能够更有效地操作数据,并理解他们的代码如何与机器级操作互动。此外,各种编程语言和工具通常要求开发人员直接处理二进制数据,使这一技能不可或缺。此外,decimal binary的概念不仅限于简单的转换。它还包括理解二进制算术的工作原理,包括加法、减法、乘法和除法。这些操作遵循特定的规则,这些规则因数字集的限制而异。例如,添加两个二进制数字遵循与十进制加法类似的原则,但当和超过1而不是9时就会进位。总之,掌握通过decimal binary转换在十进制系统和二进制系统之间转换的过程,对于任何参与数学、计算或数字技术的人来说都是必不可少的。它使人们更深入地理解数字在数字世界中的表示和操作。随着技术的不断发展,掌握这些基本概念的重要性只会增加,使研究decimal binary转换成为未来几代人的宝贵追求。
相关单词