decay law
简明释义
蜕变定律
英英释义
例句
1.In physics class, we learned how to apply the decay law to calculate the half-life of a substance.
在物理课上,我们学习了如何应用衰变定律来计算一种物质的半衰期。
2.The scientist explained the concept of decay law to the students, emphasizing its importance in understanding radioactive materials.
科学家向学生解释了衰变定律的概念,强调其在理解放射性材料中的重要性。
3.The decay law can be used to predict the behavior of unstable isotopes over time.
可以使用衰变定律来预测不稳定同位素随时间的行为。
4.Understanding the decay law is crucial for those working in nuclear medicine.
理解衰变定律对从事核医学工作的人至关重要。
5.Researchers rely on the decay law to determine the age of ancient artifacts through radiocarbon dating.
研究人员依赖于衰变定律通过放射性碳测年法来确定古代文物的年龄。
作文
The concept of the decay law is fundamental in various scientific fields, particularly in physics and chemistry. It describes the process by which a substance decreases in quantity or intensity over time. This phenomenon is commonly observed in radioactive materials, where unstable nuclei lose energy by emitting radiation. The decay law quantifies this process, allowing scientists to predict how long it will take for a certain percentage of a radioactive sample to decay. In essence, the decay law states that the rate of decay of a substance is proportional to the amount of the substance that remains. Mathematically, this can be expressed with the equation: N(t) = N0 * e^(-λt), where N(t) is the quantity of the substance at time t, N0 is the initial quantity, λ is the decay constant, and e is Euler's number. This exponential relationship illustrates how quickly substances can diminish over time, leading to important implications in fields such as nuclear medicine and radiometric dating.For instance, in nuclear medicine, understanding the decay law is crucial for determining the appropriate dosage of radioactive isotopes used in diagnostic imaging or treatment. Medical professionals must calculate how long it takes for the radioisotope to decay to safe levels, ensuring patient safety while maximizing the effectiveness of the treatment. Similarly, archaeologists rely on the decay law when using carbon dating to determine the age of ancient artifacts. By measuring the remaining carbon-14 in a sample and applying the decay law, they can estimate how long it has been since the organism died.Moreover, the decay law is not limited to physical sciences; it also finds applications in social sciences and economics. For example, one can observe a similar pattern in the decline of a population or the depreciation of an asset over time. In these contexts, the decay law helps analysts understand trends and make informed predictions about future developments.In conclusion, the decay law serves as a vital principle across various disciplines. Its ability to describe the predictable patterns of decline allows scientists and researchers to make significant advancements in their respective fields. Whether in the realm of physics, medicine, archaeology, or economics, the decay law provides a framework for understanding how and why things change over time, ultimately enhancing our comprehension of the world around us.
“衰变定律”的概念在各个科学领域中都是基础,特别是在物理学和化学中。它描述了一个物质随时间减少数量或强度的过程。这种现象通常在放射性材料中观察到,其中不稳定的原子核通过发射辐射失去能量。“衰变定律”量化了这一过程,使科学家能够预测一定比例的放射性样本衰变所需的时间。从本质上讲,“衰变定律”指出,物质的衰变速率与剩余物质的数量成正比。从数学上讲,这可以用方程式表示:N(t) = N0 * e^(-λt),其中N(t)是时间t时物质的数量,N0是初始数量,λ是衰变常数,e是欧拉数。这个指数关系说明了物质随时间迅速减少的方式,这在核医学和放射性测年等领域具有重要意义。例如,在核医学中,理解“衰变定律”对确定用于诊断成像或治疗的放射性同位素的适当剂量至关重要。医务人员必须计算放射性同位素衰变到安全水平所需的时间,确保患者安全,同时最大限度地提高治疗的有效性。同样,考古学家在使用碳测年法确定古代文物的年龄时也依赖于“衰变定律”。通过测量样本中剩余的碳-14并应用“衰变定律”,他们可以估计自生物死亡以来经过了多长时间。此外,“衰变定律”并不限于自然科学;它在社会科学和经济学中也有应用。例如,可以观察到人口下降或资产贬值随时间而呈现出类似的模式。在这些背景下,“衰变定律”帮助分析师理解趋势,并对未来的发展做出明智的预测。总之,“衰变定律”作为各个学科的重要原则。它能够描述可预测的衰退模式,使科学家和研究人员在各自的领域取得重大进展。无论是在物理、医学、考古学还是经济学领域,“衰变定律”为理解事物如何以及为何随着时间变化提供了框架,最终增强了我们对周围世界的理解。
相关单词