vectorial

简明释义

[ˌvɛkˈtɔriəl][ˌvɛkˈtɔriəl]

adj. [数] 向量的;带菌体的

英英释义

Relating to or denoting a quantity that has both magnitude and direction, typically represented by an arrow.

与具有大小和方向的量有关或表示,通常用箭头表示。

Involving vectors in mathematics or physics, especially in the context of vector spaces or vector fields.

涉及数学或物理中的向量,特别是在向量空间或向量场的上下文中。

单词用法

同义词

vector

向量

Vector graphics are composed of paths defined by mathematical expressions.

矢量图形由数学表达式定义的路径组成。

directional

方向性的

Directional data is essential for understanding movement patterns.

方向性数据对于理解运动模式至关重要。

geometric

几何的

Geometric transformations can be applied to vectorial representations.

几何变换可以应用于向量表示。

反义词

scalar

标量

In physics, a scalar quantity is one that is fully described by a magnitude alone.

在物理学中,标量量是指仅由大小完全描述的量。

non-vectorial

非矢量

Scalar fields are often used in mathematics to represent values at different points.

标量场常用于数学中表示不同点上的值。

例句

1.In order to calculate the equivalent step index of the periodic structure of the cladding holey optical fiber, all-vectorial fundamental space filling mode approach was utilized.

为了计算周期结构包层多孔光纤的等效阶跃折射率,采用了全矢量基本空间充填模式法。

2.The dynamics of vectorial coupled-mode solitons in one-dimensional shallow grating photonic crystals with quadratic and cubic nonlinearities is discussed.

研究同时具有二阶和三阶非线性效应的一维浅栅光子晶体中的矢量耦合模孤子动力学。

3.This article describes the design procedure of a software package for building Chinese character library in vectorial form.

本文说明为建立矢量式汉字库软件包的设计过程。

4.The shown results are applicable to all the vectorial fields.

证明结果适用于所有矢量场。

5.A fully vectorial effective index method is proposed and used to study the dispersion properties of photonic crystal fibers in combination with the concept of normalized dispersion.

提出了光子晶体光纤色散的矢量有效折射率计算方法,并结合归一化色散的概念研究了光子晶体光纤的色散特性。

6.Numerical and vectorial analysis Differential calculus: multivariable functions.

数值和矢量分析微分:多变量函数。

7.Based on the analysis of non equilibrium forces acting on a non cohesive particle, the general vectorial equation of bedload transport is derived.

基于任意面上非粘性沙颗粒的受力分析,考虑了非平衡条件,推导了更具普遍性的泥沙输移矢量式。

8.She created a vectorial 向量的 map that highlighted all the important landmarks.

她创建了一张vectorial 向量的 地图,标出了所有重要的地标。

9.The scientist used vectorial 向量的 analysis to study the movement of particles.

科学家使用vectorial 向量的 分析来研究粒子的运动。

10.The vectorial 向量的 nature of the data makes it easier to perform complex calculations.

数据的vectorial 向量的 特性使得进行复杂计算变得更加容易。

11.The engineer explained how vectorial 向量的 forces affect the stability of the structure.

工程师解释了vectorial 向量的 力如何影响结构的稳定性。

12.In computer graphics, vectorial 向量的 representations allow for scalable images without loss of quality.

在计算机图形学中,vectorial 向量的 表示允许无损失地缩放图像。

作文

In the realm of mathematics and physics, the concept of a vector is fundamental. A vector is not merely a number; it is a quantity that has both magnitude and direction. This dual nature makes vectors incredibly useful in various applications, from engineering to computer graphics. When we talk about something being vectorial, we refer to properties or operations that pertain to vectors. The term vectorial can describe a variety of phenomena, such as forces acting on an object or the trajectory of a moving particle. Understanding the vectorial nature of these elements allows us to predict their behavior in a more accurate manner.For example, consider the motion of a car on a road. The velocity of the car is a vectorial quantity because it has both speed (magnitude) and direction (the way the car is heading). If we only knew the speed of the car without knowing its direction, we would have an incomplete understanding of its movement. This is where the importance of vectorial analysis comes into play. By breaking down the motion into its vectorial components, we can analyze how different forces, such as friction and gravity, affect the car's performance.In physics, the concept of vectorial quantities extends to forces as well. For instance, when multiple forces act on an object, we can represent each force as a vector. The resultant force is then obtained by adding these vectorial forces together, taking into account their directions. This process is essential in solving problems related to equilibrium and dynamics. Without understanding the vectorial nature of forces, engineers would struggle to design stable structures or safe vehicles.Moreover, in the field of computer graphics, the vectorial representation of images is crucial. Unlike raster images, which are made up of pixels, vectorial graphics use mathematical equations to represent shapes and colors. This allows for scalability without loss of quality, making vectorial graphics ideal for logos and illustrations. As technology evolves, the demand for vectorial graphics continues to grow, especially in web design and animation.In summary, the term vectorial encapsulates a broad range of concepts that are vital in both theoretical and practical applications. Whether we are analyzing the motion of an object, calculating forces in physics, or creating stunning visuals in digital media, the vectorial aspect is always present. By mastering the principles behind vectorial quantities and their operations, we equip ourselves with powerful tools to understand and manipulate the world around us. The significance of vectorial reasoning cannot be overstated; it is a key component in many scientific and artistic disciplines, paving the way for innovation and discovery.

在数学和物理的领域,向量的概念是基础。向量不仅仅是一个数字;它是一个既有大小又有方向的量。这种双重特性使得向量在各种应用中极为有用,从工程到计算机图形学。当我们谈论某事是vectorial时,我们指的是与向量相关的属性或操作。术语vectorial可以描述多种现象,例如作用于物体的力或移动粒子的轨迹。理解这些元素的vectorial性质使我们能够以更准确的方式预测它们的行为。例如,考虑一辆汽车在道路上的运动。汽车的速度是一个vectorial量,因为它既有速度(大小)又有方向(汽车的行驶方向)。如果我们只知道汽车的速度而不知道它的方向,我们就会对它的运动有不完整的理解。这就是vectorial分析的重要性所在。通过将运动分解为其vectorial分量,我们可以分析不同的力,如摩擦力和重力,如何影响汽车的性能。在物理学中,vectorial量的概念也扩展到了力。例如,当多个力作用于一个物体时,我们可以将每个力表示为一个向量。然后,通过将这些vectorial力相加,考虑到它们的方向,可以得到合力。这个过程在解决与平衡和动力学相关的问题时至关重要。如果不理解力的vectorial性质,工程师将难以设计稳定的结构或安全的车辆。此外,在计算机图形学领域,图像的vectorial表示至关重要。与由像素组成的光栅图像不同,vectorial图形使用数学方程来表示形状和颜色。这使得在不损失质量的情况下进行缩放成为可能,使得vectorial图形非常适合用于徽标和插图。随着技术的发展,对vectorial图形的需求持续增长,尤其是在网页设计和动画中。总之,术语vectorial涵盖了一系列广泛的概念,这些概念在理论和实际应用中都是至关重要的。无论我们是在分析物体的运动、计算物理中的力,还是在数字媒体中创建惊艳的视觉效果,vectorial方面始终存在。通过掌握vectorial量及其运算背后的原理,我们为自己装备了理解和操控周围世界的强大工具。vectorial推理的重要性不容小觑;它是许多科学和艺术学科中的关键组成部分,为创新和发现铺平了道路。