coupling parameter
简明释义
耦合参数
英英释义
A coupling parameter is a quantity that describes the strength of interaction between two or more systems, fields, or particles in a physical model. | 耦合参数是一个量,描述在物理模型中两个或多个系统、场或粒子之间相互作用的强度。 |
例句
1.Theoretical predictions often rely on the value of the coupling parameter to simulate real-world phenomena.
理论预测通常依赖于耦合参数的值来模拟现实世界现象。
2.Adjusting the coupling parameter can lead to different phases in the material's properties.
调整耦合参数可以导致材料性质的不同相位。
3.In the context of machine learning, the coupling parameter can influence how features are combined during training.
在机器学习的背景下,耦合参数可以影响特征在训练过程中的组合方式。
4.The coupling parameter in this model determines how strongly the two systems interact with each other.
该模型中的耦合参数决定了两个系统之间相互作用的强度。
5.In quantum mechanics, the strength of interaction between particles can be described by the coupling parameter, which is crucial for understanding their behavior.
在量子力学中,粒子之间相互作用的强度可以通过耦合参数来描述,这对于理解它们的行为至关重要。
作文
In the realm of physics and engineering, the concept of a coupling parameter plays a pivotal role in understanding the interactions between different systems. A coupling parameter is essentially a quantitative measure that describes how strongly two systems or components are interrelated or interact with each other. This parameter is crucial in various fields, including quantum mechanics, statistical mechanics, and even in the study of complex networks. To illustrate the significance of the coupling parameter, consider the example of a simple pendulum coupled with another pendulum. When these two pendulums are connected, their motions become intertwined. The strength of this interaction can be quantified using a coupling parameter. If the coupling parameter is large, the two pendulums will swing in harmony, while a smaller coupling parameter may lead to more independent motions. This interplay is not just limited to mechanical systems; it extends to electrical circuits, where the coupling between inductors can affect the overall behavior of the circuit.Moreover, in the context of quantum mechanics, the coupling parameter can determine the energy levels of particles in a system. For example, in quantum field theory, the strength of the interaction between particles is characterized by a coupling parameter. A strong coupling can lead to complex phenomena such as the formation of bound states, while weak coupling might result in simpler interactions. This aspect highlights the importance of the coupling parameter in predicting the behavior of quantum systems and understanding fundamental physical laws.The applications of the coupling parameter extend beyond theoretical physics into practical scenarios. In engineering, for instance, the design of mechanical systems often requires an understanding of how different parts will interact under various conditions. Engineers must consider the coupling parameter when designing systems to ensure they function efficiently and safely. For example, in robotics, the coupling parameter can influence how robotic limbs move in coordination, affecting the overall performance of the robot.In summary, the coupling parameter is a fundamental concept that serves as a bridge between various disciplines, enabling scientists and engineers to quantify interactions and predict behaviors in complex systems. Understanding this parameter allows for advancements in technology and deepens our comprehension of the natural world. As we continue to explore the intricacies of different systems, the role of the coupling parameter will undoubtedly remain central to our discoveries and innovations.
在物理和工程领域,耦合参数的概念在理解不同系统之间的相互作用中起着关键作用。耦合参数本质上是一个定量度量,用于描述两个系统或组件之间的相互关系或相互作用的强度。这个参数在多个领域中至关重要,包括量子力学、统计力学,甚至复杂网络的研究。为了说明耦合参数的重要性,考虑一个简单摆与另一个摆的例子。当这两个摆连接在一起时,它们的运动变得交织在一起。这种相互作用的强度可以用耦合参数来量化。如果耦合参数很大,这两个摆将和谐地摆动,而较小的耦合参数可能导致更独立的运动。这种相互作用不仅限于机械系统;它还扩展到电路,其中电感器之间的耦合会影响电路的整体行为。此外,在量子力学的背景下,耦合参数可以决定系统中粒子的能级。例如,在量子场论中,粒子之间相互作用的强度由耦合参数来表征。强耦合可能导致复杂现象的形成,例如束缚态,而弱耦合可能导致更简单的相互作用。这一方面突显了耦合参数在预测量子系统行为和理解基本物理法则中的重要性。耦合参数的应用超越了理论物理,延伸到实际场景。在工程中,例如,机械系统的设计通常需要了解不同部件在各种条件下如何相互作用。工程师在设计系统时必须考虑耦合参数,以确保它们高效安全地运行。例如,在机器人技术中,耦合参数可以影响机器人肢体协调运动的方式,从而影响机器人的整体性能。总之,耦合参数是一个基本概念,作为不同学科之间的桥梁,使科学家和工程师能够量化相互作用并预测复杂系统的行为。理解这一参数可以推动技术进步,并加深我们对自然世界的理解。随着我们继续探索不同系统的复杂性,耦合参数的作用无疑将在我们的发现和创新中保持核心地位。
相关单词