multiplets
简明释义
n. [物] 多重线;多胎
英英释义
单词用法
自旋多重态 | |
能量多重态 | |
多重态结构 | |
多重态分裂 |
同义词
组 | 数据被组织成组以便于分析。 | ||
簇 | 样本被排列成簇以观察模式。 | ||
集合 | 我们有几个数据集可以比较。 | ||
集合 | 研究涉及各种文物的集合。 | ||
数组 | The results were presented in arrays for better visualization. | 结果以数组形式呈现,以便更好地可视化。 |
反义词
例句
1.Another particle grouping is referred to as charge multiplets.
粒子的另一分类叫做电荷多重态。
2.Another particle grouping is referred to as charge multiplets.
粒子的另一分类叫做电荷多重态。
3.The analysis of multiplets (多重峰) in the spectrum can reveal information about the molecular structure.
光谱中multiplets(多重峰)的分析可以揭示分子结构的信息。
4.The presence of multiplets (多重峰) suggests that there are neighboring protons affecting the chemical shifts.
存在multiplets(多重峰)表明邻近的质子影响了化学位移。
5.Chemists use the concept of multiplets (多重峰) to interpret the interactions between different hydrogen atoms in organic compounds.
化学家使用multiplets(多重峰)的概念来解释有机化合物中不同氢原子之间的相互作用。
6.When analyzing a proton NMR spectrum, you might encounter multiplets (多重峰) that indicate complex hydrogen environments.
在分析质子NMR光谱时,您可能会遇到指示复杂氢环境的multiplets(多重峰)。
7.In nuclear magnetic resonance (NMR) spectroscopy, we often observe signals that appear as multiplets (多重峰) due to spin-spin coupling.
在核磁共振(NMR)光谱中,我们经常观察到由于自旋耦合而出现的信号,这些信号表现为multiplets(多重峰)。
作文
In the field of physics and chemistry, the term multiplets refers to a group of closely spaced energy levels or spectral lines that arise from certain quantum mechanical interactions. Understanding multiplets is crucial for interpreting various phenomena, such as atomic spectra and magnetic resonance imaging (MRI). For instance, when we look at the emission spectrum of an atom, we often see several lines that are not isolated but rather grouped together in a pattern known as a multiplet. This grouping occurs due to the splitting of energy levels caused by interactions between electrons, which can include spin-orbit coupling or hyperfine splitting.The concept of multiplets can be illustrated through the example of hydrogen's spectral lines. Hydrogen has a simple structure with one electron orbiting a nucleus. When this electron transitions between energy levels, it emits or absorbs light at specific wavelengths. However, if we consider more complex atoms with multiple electrons, the situation becomes much more intricate. The interactions among the electrons lead to the formation of multiplets, where multiple lines appear in close proximity on the spectrum. This phenomenon allows scientists to glean information about the electronic configuration and interactions within the atom.In nuclear magnetic resonance (NMR) spectroscopy, the understanding of multiplets is equally important. In NMR, the presence of different chemical environments around a nucleus can cause the signals to split into multiplets. Each peak in the multiplet corresponds to a specific arrangement of surrounding nuclei, providing detailed insights into molecular structure and dynamics. For chemists, analyzing these multiplets can reveal critical information about molecular connectivity, functional groups, and even stereochemistry.Moreover, the study of multiplets extends beyond just theoretical concepts; it has practical applications in various scientific fields. For instance, in materials science, understanding the multiplets can help in characterizing new materials, predicting their properties, and tailoring them for specific applications. Similarly, in medicine, the analysis of multiplets in MRI can enhance the diagnostic capabilities of imaging techniques, leading to better patient outcomes.In conclusion, the term multiplets encompasses a fundamental aspect of quantum mechanics that reveals much about the nature of matter and energy interactions. Whether in the context of atomic spectra or advanced imaging techniques, the study of multiplets provides valuable insights that bridge theoretical physics and practical applications. As research continues to evolve, the significance of multiplets will undoubtedly expand, offering new opportunities for discovery and innovation across various scientific disciplines.
在物理和化学领域,术语multiplets指的是由于某些量子力学相互作用而产生的一组紧密间隔的能级或光谱线。理解multiplets对于解释各种现象至关重要,例如原子光谱和磁共振成像(MRI)。例如,当我们观察一个原子的发射光谱时,我们通常会看到几条不是孤立的而是以一种称为multiplet的模式聚集在一起的线。这种分组发生在由于电子之间的相互作用导致的能级分裂,这可能包括自旋-轨道耦合或超精细分裂。Multiplets的概念可以通过氢的光谱线示例来说明。氢具有简单的结构,只有一个电子围绕原子核旋转。当这个电子在能级之间跃迁时,它以特定波长发射或吸收光。然而,如果我们考虑多个电子的更复杂的原子,情况就变得更加复杂。电子之间的相互作用导致形成multiplets,在光谱上出现多个相近的线。这一现象使科学家能够获取有关原子的电子配置和相互作用的信息。在核磁共振(NMR)光谱中,理解multiplets同样重要。在NMR中,围绕核的不同化学环境的存在可以导致信号分裂成multiplets。Multiplet中的每个峰对应于特定的周围核排列,为分子结构和动态提供详细的见解。对于化学家来说,分析这些multiplets可以揭示有关分子连接性、官能团甚至立体化学的重要信息。此外,对multiplets的研究不仅限于理论概念;它在各个科学领域都有实际应用。例如,在材料科学中,理解multiplets可以帮助表征新材料,预测其特性,并根据特定应用进行定制。类似地,在医学中,MRI中multiplets的分析可以增强成像技术的诊断能力,从而改善患者的结果。总之,术语multiplets包含了量子力学的一个基本方面,揭示了物质和能量相互作用的本质。无论是在原子光谱还是先进成像技术的背景下,研究multiplets提供了宝贵的见解,架起了理论物理与实际应用之间的桥梁。随着研究的不断发展,multiplets的重要性无疑会扩展,为各个科学学科的发现和创新提供新的机会。