ultracold
简明释义
超冷
极端寒冷
英英释义
Referring to temperatures that are extremely low, typically close to absolute zero, where quantum effects become significant. | 指非常低的温度,通常接近绝对零度,在这种温度下量子效应变得显著。 |
单词用法
超冷物理学 | |
创造超冷条件 | |
研究超冷现象 | |
超冷分子 | |
超冷等离子体 | |
超冷量子气体 |
同义词
反义词
热的 | 这汤太热了,无法食用。 | ||
沸腾的 | 水在100摄氏度时沸腾。 |
例句
1.Ultracold atoms have DE Broglie wavelengths in the micrometer range, and their dynamics can no longer be described classically.
超冷原子的德布罗意波波长在微米数量级,所以和它们有关的动力学也再不能用经典物理学来解释。
2.The spectrum of the micromaser injected with ultracold V-type three-level atoms is studied.
建立了超冷V型三能级原子注入的微脉塞的量子理论。
3.Electromagnetically induced transparency and slow light in ultracold Bose gas were investigated.
研究了超冷玻色气体中的电磁感应透明现象。
4.These operate using the same principle as laser-based detectors but use beams made of ultracold atoms rather than laser light.
这种设备所基于的原理与激光探测器相同,但使用由超低温原子生成的波束而不是激光。
5.Why try to manipulate ultracold, neutral atoms into performing tasks electrons do naturally without much fuss?
但是为什么我们不想办法让超冷冻的中性原子与活动中的电子自然结合呢? 为什么我们要小题大做,研究一些超复杂的系统呢?
6.In chapter 4, laser cooling and trapping and applications of ultracold atoms are reviewed. The beam and atom interaction theory is analyzed.
第四章针对空心光束的应用,综述了激光与原子相互作用的物理机制,分析了空心光束冷却原子的机理以及研究动态。
7.The basic principles, methods and experimental results on the generation of cold or ultracold atomic beams and their recent progresses are reviewed.
综述了冷原子束或超冷原子束产生的基本原理、方法和实验结果及其最新进展。
8.The basic principles, methods and experimental results on the generation of cold or ultracold atomic beams and their recent progresses are reviewed.
综述了冷原子束或超冷原子束产生的基本原理、方法和实验结果及其最新进展。
9.The phase diagram of a homogenous ultracold Fermi gas with spin polarization is studied at unitarity.
研究了超冷均匀极化的费米气体在共振区的相图。
10.The ultracold (超冷) atoms can be manipulated using laser beams for precision measurements.
可以使用激光束操纵这些ultracold (超冷) 原子进行精确测量。
11.In ultracold (超冷) physics, scientists observe behaviors that are not seen at higher temperatures.
在ultracold (超冷) 物理学中,科学家观察到在较高温度下看不到的行为。
12.The experiment requires maintaining the atoms at ultracold (超冷) temperatures close to absolute zero.
实验需要将原子保持在接近绝对零度的ultracold (超冷) 温度下。
13.Researchers have created an ultracold (超冷) gas of sodium-potassium molecules to study quantum phenomena.
研究人员创造了一个ultracold (超冷) 的钠钾分子气体,以研究量子现象。
14.Creating ultracold (超冷) molecules opens new avenues for studying chemical reactions at low temperatures.
创造ultracold (超冷) 分子为研究低温下的化学反应开辟了新途径。
作文
In the realm of physics, particularly in the study of quantum mechanics, the term ultracold refers to temperatures that are close to absolute zero, typically below 1 microkelvin. At these extraordinarily low temperatures, the behavior of atoms and molecules changes dramatically, allowing scientists to explore new states of matter that cannot be observed at higher temperatures. The phenomenon of ultracold gases has opened up a plethora of research opportunities, leading to groundbreaking discoveries in various fields, from condensed matter physics to quantum computing.One of the most fascinating aspects of ultracold systems is the emergence of Bose-Einstein condensates (BECs). A BEC is a state of matter formed when a group of bosons is cooled to temperatures very near absolute zero, causing them to occupy the same quantum state. This unique state of matter exhibits remarkable properties, such as superfluidity, where the fluid can flow without viscosity. The study of BECs has provided insights into quantum phenomena and has potential applications in developing new technologies.Moreover, ultracold atoms allow researchers to simulate complex quantum systems that are otherwise challenging to study. By manipulating the interactions between ultracold atoms using lasers and magnetic fields, scientists can create artificial materials and investigate their properties. This approach has led to advancements in understanding high-temperature superconductors and topological insulators, which could revolutionize electronic devices.The techniques used to achieve ultracold temperatures involve sophisticated cooling methods, such as laser cooling and evaporative cooling. In laser cooling, lasers are used to slow down the motion of atoms, reducing their kinetic energy and, consequently, their temperature. Evaporative cooling further enhances this process by allowing the hottest atoms to escape from a trap, leaving behind colder atoms. These methods enable researchers to reach temperatures that were once thought to be unattainable.The implications of ultracold research extend beyond fundamental science. For instance, quantum computing relies on the principles of quantum mechanics, and ultracold atoms serve as potential qubits, the basic units of quantum information. By harnessing the unique properties of ultracold systems, researchers aim to build more powerful and efficient quantum computers that could solve problems currently beyond the reach of classical computers.In conclusion, the exploration of ultracold temperatures has transformed our understanding of the quantum world. From the formation of Bose-Einstein condensates to the simulation of complex quantum systems, the study of ultracold gases has far-reaching implications for both theoretical and applied physics. As technology advances, the potential applications of ultracold research will likely continue to expand, paving the way for innovations that could reshape our technological landscape. The journey into the ultracold realm is not just a scientific endeavor; it is an exploration of the very foundations of matter and energy, revealing the intricate tapestry of the universe at its most fundamental level.
在物理学领域,特别是在量子力学的研究中,术语ultracold指的是接近绝对零度的温度,通常低于1微开尔文。在这些极低的温度下,原子和分子的行为发生了剧烈变化,使科学家能够探索在更高温度下无法观察到的新物质状态。ultracold气体现象为各种领域的研究提供了大量机会,导致了凝聚态物理学到量子计算等多个领域的突破性发现。ultracold系统最迷人的方面之一是玻色-爱因斯坦凝聚(BEC)的出现。当一组玻色子被冷却到接近绝对零度的温度时,就会形成BEC,导致它们占据相同的量子状态。这种独特的物质状态表现出显著的特性,例如超流性,流体可以无粘滞地流动。对BEC的研究提供了对量子现象的深入理解,并在开发新技术方面具有潜在应用。此外,ultracold原子使研究人员能够模拟复杂的量子系统,这些系统在其他情况下难以研究。通过使用激光和磁场操纵ultracold原子之间的相互作用,科学家可以创建人工材料并研究其特性。这种方法推动了对高温超导体和拓扑绝缘体的理解,这可能会彻底改变电子设备。实现ultracold温度的技术涉及复杂的冷却方法,如激光冷却和蒸发冷却。在激光冷却中,激光用于减缓原子的运动,降低它们的动能,从而降低它们的温度。蒸发冷却进一步增强了这一过程,允许最热的原子从陷阱中逃逸,留下更冷的原子。这些方法使研究人员能够达到曾被认为无法实现的温度。ultracold研究的意义超越了基础科学。例如,量子计算依赖于量子力学原理,而ultracold原子作为潜在的量子比特,即量子信息的基本单位。通过利用ultracold系统的独特特性,研究人员旨在构建更强大和高效的量子计算机,这可能解决当前超出经典计算机能力的问题。总之,探索ultracold温度改变了我们对量子世界的理解。从玻色-爱因斯坦凝聚的形成到复杂量子系统的模拟,ultracold气体的研究对理论和应用物理学具有深远的影响。随着技术的进步,ultracold研究的潜在应用可能会继续扩大,为可能重塑我们技术格局的创新铺平道路。进入ultracold领域的旅程不仅仅是科学的努力;它是对物质和能量基本基础的探索,揭示了宇宙在其最基本层面上的复杂画卷。