electronic polarization
简明释义
电子极化
英英释义
Electronic polarization refers to the displacement of the electron cloud in a material in response to an external electric field, resulting in a dipole moment. | 电子极化是指材料中的电子云在外部电场作用下发生位移,从而产生偶极矩的现象。 |
例句
1.Understanding electronic polarization 电子极化 helps in designing better capacitors.
理解电子极化有助于设计更好的电容器。
2.In semiconductors, electronic polarization 电子极化 can significantly affect carrier mobility.
在半导体中,电子极化可以显著影响载流子的迁移率。
3.The study of electronic polarization 电子极化 is crucial for understanding the electrical properties of materials.
对电子极化的研究对于理解材料的电气特性至关重要。
4.Researchers are exploring how electronic polarization 电子极化 influences the behavior of nanostructures.
研究人员正在探索电子极化如何影响纳米结构的行为。
5.The phenomenon of electronic polarization 电子极化 plays a key role in the development of new electronic devices.
在新电子设备的发展中,电子极化现象起着关键作用。
作文
In the realm of physics and materials science, the term electronic polarization refers to the phenomenon where the distribution of electrons within an atom or a molecule is distorted in response to an external electric field. This distortion leads to the formation of dipoles, which can significantly influence the material's electrical properties. Understanding electronic polarization is essential for the development of various technologies, including capacitors, sensors, and semiconductors.To grasp the concept of electronic polarization, it is crucial to first understand the structure of atoms. Atoms consist of a nucleus made up of protons and neutrons, surrounded by a cloud of electrons. In a neutral atom, the number of protons equals the number of electrons, resulting in no net charge. However, when an external electric field is applied, the electrons may shift slightly from their original positions, causing a separation of charge within the atom. This separation creates a dipole moment, which is a measure of the polarity of the system.The extent of electronic polarization depends on several factors, including the strength of the electric field and the nature of the material. For instance, materials with loosely bound electrons, such as metals, exhibit a high degree of electronic polarization. In contrast, insulators, which have tightly bound electrons, show less polarization under the same conditions. This difference is crucial in understanding how different materials respond to electric fields and how they can be used in various applications.One significant application of electronic polarization is in the design of capacitors. Capacitors are devices that store electrical energy in an electric field. When a capacitor is charged, the electric field causes the electrons in the dielectric material between the plates to polarize. This polarization increases the capacitor's ability to store charge, making it an essential component in electronic circuits.Another area where electronic polarization plays a vital role is in the development of sensors. Many sensors rely on changes in electrical properties due to electronic polarization to detect environmental changes, such as temperature, pressure, or humidity. By measuring the degree of polarization in response to an external stimulus, these sensors can provide accurate readings and facilitate automation in various industries.Furthermore, electronic polarization is critical in the field of semiconductor technology. Semiconductors are materials that have electrical conductivity between that of conductors and insulators. The behavior of semiconductors is heavily influenced by electronic polarization, as it affects the movement of charge carriers (electrons and holes) within the material. Understanding how electronic polarization impacts semiconductor performance is essential for developing faster and more efficient electronic devices.In conclusion, electronic polarization is a fundamental concept in physics and materials science that describes how the distribution of electrons in atoms and molecules is altered by external electric fields. Its implications are vast, affecting the functionality of capacitors, sensors, and semiconductors. As technology continues to advance, a deeper understanding of electronic polarization will be crucial for innovating new materials and devices that can meet the demands of modern society. By exploring this phenomenon, researchers can unlock new possibilities in electronics and improve the efficiency of existing technologies.
在物理学和材料科学领域,术语电子极化指的是在外部电场作用下,原子或分子内电子的分布被扭曲的现象。这种扭曲导致偶极子的形成,这可能显著影响材料的电气特性。理解电子极化对于开发各种技术至关重要,包括电容器、传感器和半导体。要掌握电子极化的概念,首先必须了解原子的结构。原子由一个由质子和中子组成的原子核,以及围绕其周围的电子云组成。在中性原子中,质子的数量等于电子的数量,从而没有净电荷。然而,当施加外部电场时,电子可能会略微偏离其原始位置,导致原子内部电荷的分离。这种分离产生了偶极矩,这是系统极性的度量。电子极化的程度取决于多个因素,包括电场的强度和材料的性质。例如,具有松散结合电子的材料(如金属)表现出高程度的电子极化。相反,绝缘体(其电子结合紧密)在相同条件下表现出较少的极化。这种差异对于理解不同材料如何响应电场以及它们如何在各种应用中使用至关重要。电子极化的一个重要应用是在电容器的设计中。电容器是储存电能的装置。当电容器充电时,电场导致电容器板之间的介质材料中的电子极化。这种极化增加了电容器储存电荷的能力,使其成为电子电路中的重要组成部分。另一个电子极化发挥重要作用的领域是传感器的开发。许多传感器依赖于由于电子极化引起的电气特性变化来检测环境变化,例如温度、压力或湿度。通过测量对外部刺激的极化程度,这些传感器可以提供准确的读数,并促进各行业的自动化。此外,电子极化在半导体技术领域至关重要。半导体是电导率介于导体和绝缘体之间的材料。半导体的行为受到电子极化的重大影响,因为它影响材料内电荷载流子(电子和空穴)的运动。理解电子极化如何影响半导体性能对于开发更快、更高效的电子设备至关重要。总之,电子极化是物理学和材料科学中的一个基本概念,描述了外部电场如何改变原子和分子内电子的分布。它的影响广泛,影响着电容器、传感器和半导体的功能。随着技术的不断进步,更深入地理解电子极化对于创新新的材料和设备以满足现代社会的需求至关重要。通过探索这一现象,研究人员可以解锁电子学的新可能性,提高现有技术的效率。
相关单词