electronic oscillation
简明释义
电子振荡
英英释义
Electronic oscillation refers to the repetitive variation, typically in amplitude or frequency, of an electrical signal or current in a circuit. | 电子振荡是指电路中电信号或电流的幅度或频率的重复变化,通常表现为周期性波动。 |
例句
1.Engineers study electronic oscillation to improve communication systems.
工程师研究电子振荡以改善通信系统。
2.The radio uses electronic oscillation to tune into different frequencies.
收音机使用电子振荡来调谐到不同的频率。
3.The function generator produces electronic oscillation signals for testing circuits.
函数发生器产生用于测试电路的电子振荡信号。
4.The speaker converts electronic oscillation into sound waves.
扬声器将电子振荡转换为声波。
5.In a quartz watch, electronic oscillation helps maintain accurate timekeeping.
在石英表中,电子振荡有助于保持准确的计时。
作文
In the world of electronics, the concept of electronic oscillation plays a crucial role in the functioning of various devices. Oscillation refers to the repetitive variation, typically in time, of some measure about a central value or between two or more different states. In electronic terms, it involves the periodic movement of electrical signals. Understanding electronic oscillation is essential for anyone interested in electronics, as it forms the foundation for many technologies we use today.At its core, electronic oscillation occurs when an electric circuit is able to store and release energy repeatedly. This process is often facilitated by components such as capacitors and inductors, which can store electrical energy temporarily. When a capacitor charges, it stores energy in the form of an electric field, while an inductor stores energy in the form of a magnetic field. The interaction between these two components leads to the oscillatory behavior observed in many circuits.One of the most common examples of electronic oscillation can be found in radio transmitters and receivers. These devices rely on the generation of oscillating electromagnetic waves to transmit information over distances. When a transmitter creates an oscillating signal, it modulates the amplitude, frequency, or phase of the wave to encode information. The receiver then detects these oscillations and demodulates them to retrieve the original message. This process is critical for communication systems and illustrates the importance of electronic oscillation in modern technology.Furthermore, electronic oscillation is not limited to communication devices. It is also fundamental in the operation of clocks and timers. Quartz crystal oscillators, for instance, utilize the principles of electronic oscillation to maintain accurate time. A quartz crystal vibrates at a specific frequency when an electric current is applied, providing a stable reference point for timekeeping devices. This principle is widely used in watches, smartphones, and computers, demonstrating how electronic oscillation underpins many aspects of our daily lives.Moreover, the study of electronic oscillation has led to advancements in various fields, including signal processing and control systems. Engineers and scientists harness the principles of oscillation to develop filters, amplifiers, and oscillators that enhance the performance of electronic devices. For example, filters can selectively allow certain frequencies to pass while attenuating others, which is vital in applications ranging from audio processing to telecommunications. Similarly, oscillators generate precise frequencies that are essential for synthesizing sounds in musical instruments or creating stable clock signals in digital circuits.In conclusion, electronic oscillation is a fundamental phenomenon in electronics that enables the functioning of countless devices and systems. Its principles are at the heart of communication technologies, timekeeping mechanisms, and advanced electronic applications. By understanding electronic oscillation, we gain insight into the intricate workings of the electronic world around us. As technology continues to evolve, the significance of electronic oscillation will undoubtedly remain pivotal in shaping the future of innovation and connectivity.
在电子世界中,电子振荡的概念在各种设备的功能中发挥着至关重要的作用。振荡是指某种测量值围绕中心值或在两个或多个不同状态之间的重复变化,通常是随时间变化的。在电子术语中,它涉及电信号的周期性运动。理解电子振荡对任何对电子学感兴趣的人来说都是至关重要的,因为它构成了我们今天使用的许多技术的基础。从本质上讲,电子振荡发生在一个电路能够反复存储和释放能量时。这一过程通常由电容器和电感器等组件促进,这些组件可以暂时存储电能。当电容器充电时,它以电场的形式存储能量,而电感器则以磁场的形式存储能量。这两个组件之间的相互作用导致了许多电路中观察到的振荡行为。电子振荡最常见的例子之一可以在无线电发射器和接收器中找到。这些设备依赖于产生振荡电磁波来在距离上发送信息。当发射器创建一个振荡信号时,它调制波的幅度、频率或相位以编码信息。接收器随后检测这些振荡并对其进行解调,以检索原始消息。这个过程对通信系统至关重要,并说明了电子振荡在现代技术中的重要性。此外,电子振荡不仅限于通信设备。它在时钟和计时器的操作中也是基础。例如,石英晶体振荡器利用电子振荡的原理来保持准确的时间。当施加电流时,石英晶体以特定频率振动,提供了时间保持设备的稳定参考点。这个原理广泛应用于手表、智能手机和计算机,展示了电子振荡如何支撑我们日常生活的许多方面。此外,电子振荡的研究推动了包括信号处理和控制系统在内的各个领域的进步。工程师和科学家利用振荡的原理开发滤波器、放大器和振荡器,以提高电子设备的性能。例如,滤波器可以选择性地允许某些频率通过,同时衰减其他频率,这在从音频处理到电信的应用中至关重要。同样,振荡器生成精确的频率,这对于合成乐器中的声音或在数字电路中创建稳定的时钟信号是必不可少的。总之,电子振荡是电子学中的一种基本现象,使无数设备和系统得以运行。它的原理是通信技术、计时机制和先进电子应用的核心。通过理解电子振荡,我们可以深入了解我们周围电子世界的复杂运作。随着技术的不断发展,电子振荡的重要性无疑将在塑造创新和连接的未来中继续发挥关键作用。
相关单词