cotangent
简明释义
英[kəʊˈtændʒ(ə)nt]美[ˈkoˈtændʒənt]
n. [数] 余切;交易延期费
英英释义
单词用法
45度的余切 | |
计算余切 | |
余切图像 | |
在三角学中使用余切 | |
余切与正切的关系 | |
余切函数的性质 | |
余切值 | |
余切比 |
同义词
反义词
正切 | The tangent of an angle is the ratio of the opposite side to the adjacent side in a right triangle. | 一个角的正切是直角三角形中对边与邻边的比率。 |
例句
1.Most of us can’t tell our secant from our cotangent.
我们中的大多数不能分辨正切余切。
2.This line, called a cotangent line, is used by the system to modify the curve.
这条线叫做共切线,是系统用来改变曲线形状的。
3.but remember, we set it at the critical angle, so that cotangent alpha is 2 mu.
,但是记住,摆放的恰是临界角,所以cotα等于2μ
4.From two aspects of theory and practice, this article more systematically expounded the peak sample transformer rotating shaft cotangent coding scheme and its engineering design principles.
从理论和实践两个方面较为系统地阐述了旋转变压器峰值采样正余切轴角编码方案及其工程设计原理。
5.A new cotangent theorem is deduced to solve the nonlinearity for bearing-only measurement.
通过新提出的余切关系定理,解决了单站纯方位观测的非线性问题。
6.Most of us can't tell our secant from our cotangent.
我们中的大多数不能分辨正切余切。
7.It actually represents the Frog Kok of Cotangent value.
它实际上代表了辙叉角的余切值。
8.In this paper, we study the symplectic groupoids structure on the cotangent bundle of Lie group.
本文研究了李群的余切丛上的辛群胚结构。
9.From two aspects of theory and practice, this article more systematically expounded the peak sample transformer rotating shaft cotangent coding scheme and its engineering design principles.
从理论和实践两个方面较为系统地阐述了旋转变压器峰值采样正余切轴角编码方案及其工程设计原理。
10.According to the author's Cotangent relations theorem, bearings-only target tracking with linear motion is achieved.
根据所提出的余切关系定理,实现了纯方位观测的直线运动目标跟踪。
11.When the angle is 45 degrees, the cotangent 余切 is equal to 1.
当角度为45度时,cotangent 余切等于1。
12.In trigonometry, the ratio of the adjacent side to the opposite side in a right triangle is known as the cotangent 余切.
在三角学中,直角三角形中邻边与对边的比称为cotangent 余切。
13.In calculus, the derivative of the cotangent 余切 function is -csc²(x).
在微积分中,cotangent 余切函数的导数是 -csc²(x)。
14.To find the cotangent 余切 of an angle, you can use the formula: cot(θ) = 1/tan(θ).
要找出一个角的cotangent 余切,可以使用公式:cot(θ) = 1/tan(θ)。
15.The cotangent 余切 function is useful in solving problems involving right triangles.
在解决涉及直角三角形的问题时,cotangent 余切函数非常有用。
作文
In the realm of mathematics, particularly in trigonometry, the term cotangent refers to a specific function that is essential for understanding the relationships between the angles and sides of triangles. The cotangent function is defined as the ratio of the adjacent side to the opposite side in a right triangle. This means that if you have a right triangle where one of the angles is θ, the cotangent of that angle is equal to the length of the side adjacent to θ divided by the length of the side opposite to θ. Mathematically, it is expressed as cot(θ) = adjacent/opposite. Understanding the cotangent function is crucial for various applications in engineering, physics, and computer science. For instance, in physics, when analyzing wave patterns or oscillations, the cotangent function can help describe the relationship between different forces acting at angles. In engineering, especially in fields like structural engineering, the cotangent can be utilized to calculate forces acting on structures at different angles, ensuring safety and stability. Moreover, the cotangent function has properties that make it unique compared to other trigonometric functions such as sine and cosine. One interesting aspect is that the cotangent is the reciprocal of the tangent function. This means that cot(θ) = 1/tan(θ). This reciprocal relationship allows mathematicians and scientists to switch between different trigonometric functions depending on which is more convenient for their calculations. Additionally, the cotangent function has a periodic nature, repeating its values in regular intervals. Specifically, the cotangent function has a period of π, meaning that cot(θ + π) = cot(θ). This property is particularly useful when solving trigonometric equations or analyzing periodic phenomena. In practical applications, the cotangent function can also be used in navigation and computer graphics. For example, in computer graphics, the cotangent can help in calculating angles and distances between points on a screen, allowing for more realistic rendering of images and animations. Similarly, in navigation systems, understanding angles and distances using the cotangent function can aid in route planning and optimization. In conclusion, the cotangent function is a fundamental concept in trigonometry that extends beyond theoretical mathematics into practical applications across various fields. By understanding the definition, properties, and uses of the cotangent, one can appreciate its importance in solving real-world problems. Whether it is in engineering, physics, computer science, or even daily life scenarios involving angles and distances, the cotangent provides valuable insights and tools for analysis. Thus, mastering the cotangent function is not only beneficial for academic purposes but also for practical applications in our increasingly technical world.
在数学的领域,特别是在三角学中,术语cotangent指的是一个特定的函数,对于理解三角形的角和边之间的关系至关重要。cotangent函数被定义为直角三角形中邻边与对边的比率。这意味着如果你有一个直角三角形,其中一个角是θ,则该角的cotangent等于邻边的长度除以对边的长度。从数学上讲,它可以表示为cot(θ) = adjacent/opposite。理解cotangent函数对于工程、物理和计算机科学等各种应用至关重要。例如,在物理学中,当分析波动模式或振荡时,cotangent函数可以帮助描述不同作用在角度上的力之间的关系。在工程领域,尤其是在结构工程中,cotangent可用于计算作用在不同角度上的结构力,以确保安全和稳定。此外,cotangent函数具有使其与其他三角函数(如正弦和余弦)不同的特性。一个有趣的方面是,cotangent是切线函数的倒数。这意味着cot(θ) = 1/tan(θ)。这种倒数关系使得数学家和科学家能够根据计算的便利性在不同的三角函数之间切换。另外,cotangent函数具有周期性,定期重复其值。具体而言,cotangent函数的周期为π,这意味着cot(θ + π) = cot(θ)。这个特性在解决三角方程或分析周期现象时特别有用。在实际应用中,cotangent函数还可以用于导航和计算机图形学。例如,在计算机图形学中,cotangent可以帮助计算屏幕上点之间的角度和距离,从而实现更真实的图像和动画渲染。同样,在导航系统中,使用cotangent函数理解角度和距离可以帮助进行路线规划和优化。总之,cotangent函数是三角学中的一个基本概念,它超越了理论数学,延伸到各个领域的实际应用。通过理解cotangent的定义、性质和用途,人们可以欣赏到它在解决现实世界问题中的重要性。无论是在工程、物理、计算机科学还是日常涉及角度和距离的场景中,cotangent都提供了有价值的见解和分析工具。因此,掌握cotangent函数不仅对学术目的有益,而且对我们日益技术化的世界中的实际应用也至关重要。